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Abstract

This project will contain a series of random experiments demon-
strating some of the core concepts pertaining to the ECE 863 course
at Michigan State University. The focus of the project is sums of
random variables, as well as correlated Gaussian processes. All exper-
iments contained within this report were conducted through Matlab.
The complete Matlab script can be found at the end of the document
in pdf form; an understanding of the attached script requires only
a basic understanding of programming tools, as well as some of the
probabilistic concepts outlined by this report.

1 Random Samples

The first experiment of this report utilizes the well-known rand function in
Matlab:

X = rand(N,1);
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The above function creates an N length array of uniformly distributed
random variables between 0 and 1. It is obvious that the pdf of such a
function is a uniform distribution between 0 and 1.

To confirm this, the rand function is used with various values of N
and histograms are generated using the resulting X. It is expected that as
N increases in value, the histograms will smooth out, better reflecting the
shape of the expected pdf. Note that if it was desired to approximate the
real-valued pdf, one would have to normalize the histograms to N, but as
only an observation of the shape of the histogram is desired, this is not done.

Figure 1: Generated histogram using the rand(N,1) function with N = 10.
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Figure 2: Generated histogram using the rand(N,1) function with N = 1,000.

Figure 3: Generated histogram using the rand(N,1) function with N =
100,000.
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Figure 4: Generated histogram using the rand(N,1) function with N =
10,000,000.

Observing Fig 1-4, it is clear that as N increases, the shape of the his-
togram better approximates that of a uniform distribution between 0 and
1. For a very small N, the histogram appears almost random, although it is
not, and with a very large N, the shape almost perfectly reflects the expected
distribution. This is exactly what was anticipated.

2 Exponential Random Variable

Extending from above, the previously generated uniformly distributed sam-
ples are transformed into new random samples with an exponential distribu-
tion. This means that X, a uniformly distributed random variable between
0 and 1, is inputted into a function, g(X), resulting in Y, which must have
an exponential distribution.

We solve for g(X) below using the Transformation method [1] (page 172):
Starting with the provided pdf for an exponential distribution:

fY (y) = e−y
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We solve for the cdf by integration from 0 to y:

FY (y) =

∫ y

0

e−y dy = 1− e−y

According to the Transformation method, our desired random distribu-
tion can be derived by inverting the cdf of the desired distribution with the
cdf of the current random variable as input to that distribution. Noting that
X, a uniform distribution from 0 to 1, has the cdf, U , defined from 0 to 1:

Y = 1− e−U

Y − 1 = −e−U

ln(1− U) = −Y

Y = − ln(1− U)

therefore, since X = U here, g(X) = − ln(1 − X), and g(X) is the
transform that can be used to generate a new variable Y with an exponential
distribution, from the original random variableX with a uniform distribution
from 0 to 1.

Repeating the above procedure for

fY (y) = λe−λy

the cdf is

FY (y) =

∫ y

0

λe−λy dy = 1− e−λy

and again, according to the Transformation method:

Y = 1− e−λU

Y − 1 = −e−λuU

ln(1− U) = −λU
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Y = −1

λ
ln(1− U)

Therefore, since X = U here, g(X) = − 1
λ
ln(1 −X). Note that the first

g(X) derived is identical to this g(X) if λ = 1 in the first derivation, which
it does.

Using the above expression, samples of X were converted into samples of
Y and histograms of their results were made.

Figure 5: Generated histogram of exponential random variable samples with
N = 100,000, λ = 1

It is clear in the above, Fig. 5, that the histogram does resemble the
shape for an exponential distribution. Also note that for Fig. 5, λ = 1.
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Figure 6: Generated histogram of exponential random variable samples with
N = 100,000, λ = .5

Figure 7: Generated histogram of exponential random variable samples with
N = 100,000, λ = .25
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Varying λ, the expected effect is observed. As λ decreases, the rate at
which the distribution decays is slower; the inverse is also true. This is
obvious when Fig. 5, 6, and 7 are compared. Fig. 5 has the steepest decay
and the largest λ, while Fig. 7 has the flattest decay and the smallest λ.

3 Random Samples for a Gaussian Random

Variable

The next experiment involves generating a random variable, Z, with a Gaus-
sian distribution.

Using the built-in norminv function in Matlab, the uniformly distributed
samples from above are transformed into Gaussian samples with zero mean
and unit variance:

Z = norminv(X);

Figure 8: Generated Gaussian distribution samples with N = 1,000
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Figure 9: Generated Gaussian distribution samples with N = 10,000,000

Histograms of the Z samples can be seen in Fig. 8 and 9. It is clear that
as N, the number of samples of the original uniform distribution, increases,
our Gaussian approximation becomes tighter to a true Gaussian curve.

For the above, Matlab handles the math for us, but it is important to
understand the underlying approach. The function norminv returns the
inverse of the standard normal cumulative distribution function (cdf), eval-
uated at the probability values in p. Variable p is of course defined from 0
to 1, the bounds of probability. There are a variety of transform methods
and ways in which norminv could be implemented and optimized; one such
method is the Transformation method that was followed above in the previ-
ous section. Knowing the cdf for the input random variable and the desired
distribution, a transformation can be derived. This method is convenient
as it is known that there is no closed-form expression for a Gaussian pdf;
typically approximations are required. In this case, as stated above, the cdf
for a uniformly distributed random variable bounded between 0 and 1 is:

FU(u) =

{
u 0 ≤ u ≤ 1

0 otherwise

and for a zero mean unit variance Gaussian random variable:
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FZ(z) =
1√
2π

e−
z2

2

From here, a Transformation expression can be derived, and this is likely
the methodology that Matlab uses. This is supported by looking into the
Matlab function norminv; it takes an input variable and then performs lin-
ear transformations using a with that input variable and a function called
erfcinv. The erfcinv function is a function for the inverse of the comple-
mentary error function. This process sounds awfully familiar to the previous
Transformation method in this report, especially if the reader recalls that the
error function is also known as a function describing the cdf of a Gaussian
distribution with zero mean and 1

2
variance.

Figure 10: Generated Gaussian distribution samples with N = 1,000, µ = −1,
and σ2 = .5
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Figure 11: Generated Gaussian distribution samples with N = 10,000,000,
µ = −1, and σ2 = .5

Continuing with this experiment, using norminv, Gaussian distributions
were generated with different means (mu) and variances (var) for different
length arrays of uniformly distributed random variables:

Z = norminv(X, mu, var);

Two such examples can be seen in Fig. 10 and 11. As expected, the
shifted mean is evident in each Figure, as well as the decreased variance.

As an exercise, the actual means and variances of samples were computed
and compared to the ”true” means and variances. The results were:

Mean for N = 10000000, true mean = -1, true var = 1: -0.999467

Var for N = 10000000, true mean = -1, true var = 1: 1.000411

Mean for N = 10000000, true mean = 1, true var = 1: 1.000533

Var for N = 10000000, true mean = 1, true var = 1: 1.000411

Mean for N = 10000000, true mean = -1, true var = .5: -0.999734

Var for N = 10000000, true mean = -1, true var = .5: 0.250103

Mean for N = 10000000, true mean = 1, true var = .5: 1.000266
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Var for N = 10000000, true mean = 1, true var = .5: 0.250103

Mean for N = 1000, true mean = -1, true var = 1: -0.963631

Var for N = 1000, true mean = -1, true var = 1: 1.068855

Mean for N = 1000, true mean = 1, true var = 1: 1.036369

Var for N = 1000, true mean = 1, true var = 1: 1.068855

Mean for N = 1000, true mean = -1, true var = .5: -0.981815

Var for N = 1000, true mean = -1, true var = .5: 0.267214

Mean for N = 1000, true mean = 1, true var = .5: 1.018185

Var for N = 1000, true mean = 1, true var = .5: 0.267214

Upon inspection, one will observe that the actual means and variances
more closely resembled the true means for N = 10000000 compared to N =
1000. This makes sense when Fig. 8 9 10 and 11 are analyzed, but also
makes sense intuitively, if the core ideas behind the laws of large numbers
are recalled.

4 Independent and Identically Distributed Ran-

dom Variables and their Sum

For our next experiment, it is desired to generate M random variables with
N random samples each.

To do this, the same rand function from earlier is used, except that we
specify both N and M:

X = rand(N,M);

This leaves a matrix of random samples, where each column is a collection
of random samples, referred to as its own random variable.

As a demonstration of the central limit theorem, summing up these ran-
dom variables is desired.

This is achieved through the sum function in Matlab:

S_x = sum(Y2,2);

Here, the 2 in sum(Y2,2) indicates summing in the row direction, as
required, since we are summing random variables by their random samples
N times.
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Figure 12: Generated Gaussian distribution from summing M = 1,000 uni-
formly distributed random variables and N = 1,000 samples from each.

Figure 13: Generated Gaussian distribution from summing M = 100,000
uniformly distributed random variables and N = 100,000 samples from each.
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Two examples for various summations of N random samples over M
random variables can be seen in Fig. 12 and 13. As N and M increase, the
curve converges onto the familiar Gaussian shape. Given knowledge of the
central limit theorem, it it known that Gaussian approximations of the sum
of iid random variables with finite means and finite variances improve as the
number of random samples and random variables increases. This is the case
here, evident by Fig. 13 better reflecting a Gaussian curve compared to Fig.
12, although both of them have the general Gaussian shape. This reinforces
the central limit theorem.

Note that for very large N and M, Matlab does not allow for this gener-
ation and summation to occur in one step, as too much memory is required.
Therefore, each random variable was generated and summed recursively to
generate Fig. 13. The code to achieve this can be found in the attached
Matlab code at the end of this document.

The above process was repeated but for exponential random variables. It
is expected that similar Gaussian curves with be generated, in accordance
with the proclamations of the central limit theorem.

The transformation derived in the previous part [g(X) = − ln(1 − X)]
was used to convert the set of M uniformly distributed random variables
with N samples each to M exponentially distributed random variables with
N samples each, as done prior.
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Figure 14: Generated Gaussian distribution from summing M = 1,000 expo-
nentially distributed random variables and N = 1,000 samples from each.

Figure 15: Generated Gaussian distribution from summing M = 1,000 expo-
nentially distributed random variables and N = 1,000 samples from each.
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Again, using the sum function in Matlab, these random variables were
summed and their distributions plotted and displayed, as shown in Fig. 14
and 15. As expected, the distribution is seemingly Gaussian, and tightens to
a Gaussian shape as N and M increase.

5 Correlated Gaussian Random Variables us-

ing Linear Transformations

The objective for this experiment is to generate M correlated Gaussian
random variables from a set of M independent Gaussian random variables
through a linear transformation.

Unlike previously for generating linear independent Gaussian random
variables, here, a linear transformation approach is used.

According to the textbook, for this method [1] (page 270), it is required to:

1. Generate U1 and U2, two independent random variables uniformly dis-
tributed in the unit interval.

This is easy and only requires use of the rand function from earlier.

2. Let R2 = −2 log(U1) and Θ = 2πU2

3. Let X1 = Rcos(Θ) =
√

−2 log(U1)cos(2πU2) and

X2 = Rcos(Θ) =
√

−2 log(U1)sin(2πU2)
This results in two independent, zero-mean, unit-variance Gaussian ran-

dom variables.
For the presented desired outcome, it is desired to start the problem with

M independent Gaussian random variables, so the above steps for 2 random
variables must somehow be extended to M random variables. Since the
random variables that are being considered are iid random variables, one can
simply replicate the process M/2 times to obtain M random variables.

Matlab code similar to the following was used to generate M independent
Gaussian random variables with N samples each, represented by Z, using the
linear transformation approach:
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Z = zeros(N, M);

for i = 1:M/2

U_1 = rand(N,1);

U_2 = rand(N,1);

Z(:,(i*2)-1) = sqrt(-2*log(U_1)).*cos(2*pi*U_2);

Z1_2(:,(i*2)) = sqrt(-2*log(U_1)).*sin(2*pi*U_2);

end

The attached Matlab code is slightly different to account for various values
of M and N, as well as other parameter changes.

Figure 16: Generated Gaussian distribution for a single random variable from
the linear transformation approach with N = 1,000,000 samples.

To verify this method, a single random variable with N = 1,000,000 sam-
ples was plotted in a histogram, evident in Fig. 16. The expected Gaussian
curve was apparent, and this established confidence in the above linear trans-
formation approach for its validity.

In order to generate a new vector of correlated Gaussian random variables,
a linear transformation was used: W = AZ. A is an M×M square matrix,
derived from a M × M covariance matrix. W is the new set of correlated
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Gaussian random variables, derived from the old set of uncorrelated Gaussian
random variables, Z.

It was given that the covariance matrix be defined by:

C =


1 ρ · · · ρM−1

ρ 1 · · · ...
...

...
. . .

...
ρM−1 · · · · · · 1


which as a Matlab function is something like:

function C = get_covariance_matrix(rho,M)

C = zeros(M, M);

for i = 1:M

for j = 1:M

power = i - j;

C(i,j) = rho^(abs(power));

end

end

end

By computing the eigenvalues and eigenvectors of C in Matlab, it is rather
straight forward to solve for the A matrix, especially since the covariance
matrix of Z is an identity matrix, as it is uncorrelated [1] (page 269-270).
This is coded in Matlab by:

C = get_covariance_matrix(rho, M);

[P,D] = eig(C);

A = P * sqrt(D);

Knowing A, only Matrix multiplication is require to solve for W. Matrix
A must be multiplied by Z random variables for each set of M samples. In
Matlab, this can be written as:

W = zeros(M);

for i = 1:N

W(:,i) = A1*(Z(i,:)’);

end
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Finally, the built cov function is used in Matlab, which returns the co-
variance of a matrix whose columns represent random variables and whose
rows represent observations, as had here, to verify the covariances for Z and
W. Variable W is transposed to match the Matlab input requirements of
rows and columns for random variables and observations:

C_w = cov(W’)

C_z = cov(Z)

The above work outlined the methods in generating and verifying that M
correlated Gaussian random variables were created. The details of the code
and computations can be again found in the attached Matlab script at the
end of this report.

Now, for the results of the above computations for different values of ρ. It is
hoped that the computed covariance matrices resemble C.

For ρ = 0, M = 2 and N = 100, our computed covariance matrix for W was:

0.8620 0.0960

-0.0960 0.9049

and for Z:

0.8620 -0.0960

-0.0960 0.9049

This shows basically no correlation, as expected when ρ = 0. In this
experiment, reflecting the theory, the covariance matrices converge to an
identity matrix for ρ = 0 as N increases, evident by the computed covariance
matrices for ρ = 0, M = 2 and N = 1,000,000 for W being:

0.9980 -0.0002

-0.0002 1.0002

and for Z:

0.9980 -0.0002

-0.0002 1.0002
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This same concept was observed for the ρ = 0 case for larger M as well.

Next, the computed covariance matrices for the case of ρ = .5, M = 6 and
N = 100 is shown. For W:

1.0319 0.4528 0.2962 0.0507 0.0740 0.0695

0.4528 0.9109 0.5362 0.2217 0.0848 0.1035

0.2962 0.5362 1.1861 0.6528 0.2555 0.3365

0.0507 0.2217 0.6528 1.1323 0.4916 0.3746

0.0740 0.0848 0.2555 0.4916 0.6822 0.3486

0.0695 0.1035 0.3365 0.3746 0.3486 0.9449

and for Z:

0.9052 0.0933 0.0316 0.0977 -0.1468 -0.0149

0.0933 1.0266 -0.0890 0.0061 0.1054 0.2781

0.0316 -0.0890 1.0419 0.0477 0.0062 -0.1318

0.0977 0.0061 0.0477 0.9595 -0.1545 -0.1066

-0.1468 0.1054 0.0062 -0.1545 0.8630 -0.0175

-0.0149 0.2781 -0.1318 -0.1066 -0.0175 1.0494

The above is not very precise, but as expected, using the same parameters
but increasing the number of samples (N = 1,000,000) results in computed
covariance matrices that much better fit to what is expected. For W:

1.0016 0.5000 0.2503 0.1246 0.0628 0.0301

0.5000 0.9996 0.5007 0.2495 0.1245 0.0619

0.2503 0.5007 0.9987 0.4995 0.2502 0.1244

0.1246 0.2495 0.4995 1.0004 0.4993 0.2489

0.0628 0.1245 0.4995 1.0004 0.9983 0.4992

0.0301 0.0619 0.1244 0.2489 0.4992 0.9982

and for Z:

0.9997 -0.0008 0.0003 0.0022 -0.0008 0.0004

-0.0008 0.9970 0.0020 0.0003 0.0002 -0.0002

0.0003 0.0020 1.0011 0.0000 -0.0006 0.0006

0.0022 0.0003 0.0000 0.9995 -0.0008 -0.0004

-0.0008 0.0002 -0.0006 -0.0008 1.0001 -0.0010

0.0004 -0.0002 0.0006 -0.0004 -0.0010 0.9991
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Lastly, for good measure, the computed covariance matrices for ρ = .95,
M = 2 and N = 1,000,000 are shown. For W:

1.0002 0.9503

0.9503 1.0001

and for Z:

0.9980 -0.0002

-0.0002 1.0002

precisely as expected for a large N.

Note that for all cases of the computed covariance matrices of Z, an iden-
tity matrix is expected. This is because Z is a set of uncorrelated Gaussian
random variables with unit variance. Covariance matrices forW on the other
hand reflect what is expected of C. Both expectations were found to be true
in the experiment.

It is concluded that the computed covariance matrices agree with the
theoretical ones overall, and this is especially true for a large N.
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Figure 17: Generated histogram distribution of two uncorrelated Gaussian
random variables (M = 2) for N = 1,000,000 samples each (ρ = 0).

Figure 18: Generated histogram distribution of two correlated Gaussian ran-
dom variables (M = 2) for N = 1,000,000 samples each and ρ = .25.
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Figure 19: Generated histogram distribution of two correlated Gaussian ran-
dom variables (M = 2) for N = 1,000,000 samples from each ρ = .95.

As an additional exercise, 3D histograms showing the distributions of two
Gaussian random variables (M = 2), with N = 1,000,000, and various values
of ρ, were generated, as seen in Fig. 17, 18, and 19. This was not a part
of the original assignment description, but it was good to discover that the
distributions for two correlated Gaussian random variables from the class
notes were able to be replicated with the above works.

6 Conclusion

With this, this project is complete. Through this work, sums of random
variables and correlated Gaussian processes were thoroughly explored, as well
as some other core probabilistic concepts, such as transformation methods,
the laws of large numbers, and the central limit theorem.

All Matlab code used in generating the included figures, code, and data
can be found, in published form, following the references page.
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clc 
close all 
clear all 

1)

a)

N1 = 10; 
X1 = rand(N1,1); 

N2 = 1000;
X2 = rand(N2,1); 

N3 = 100000; 
X3 = rand(N3,1); 

N4 = 10000000; 
X4 = rand(N4,1); 

b)

the pdf of this is a normaliy distributed pdf between 0 and 1

c)

plots of various histograms

figure() 
hist(X1) 
title(sprintf("Histogram for rand(N,1) with N = " + N1)) 
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xlabel("random variable values") 
ylabel("number of occurances") 

figure() 
hist(X2) 
title(sprintf("Histogram for rand(N,1) with N = " + N2)) 
xlabel("random variable values") 
ylabel("number of occurances") 

figure() 
hist(X3) 
title(sprintf("Histogram for rand(N,1) with N = " + N3)) 
xlabel("random variable values") 
ylabel("number of occurances") 

figure() 
hist(X4) 
title(sprintf("Histogram for rand(N,1) with N = " + N4)) 
xlabel("random variable values") 
ylabel("number of occurances") 

% we see that as N increases, the shape converges to what we expect for a 
% normal distribution 

% histogram(X,10,'Normalization','probability') - this normalizes histogram 

26



 

 

27



 

2)

a)

see page 172 of book for this transformation

b)

xbins = 0:.1:6.1; 

Y1 = -log(1-X1); % see page 172 of book for this transformation 
figure() 
hist(Y1,xbins) 
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xlim([.05 6]) 
title(sprintf("Histogram for exponential distribution with N = " + N1)) 
xlabel("random variable values") 
ylabel("number of occurances") 

Y2 = -log(1-X2); % see page 172 of book for this transformation 
figure() 
hist(Y2,xbins) 
xlim([.05 6]) 
title(sprintf("Histogram for exponential distribution with N = " + N2)) 
xlabel("random variable values") 
ylabel("number of occurances") 

Y3 = -log(1-X3); % see page 172 of book for this transformation 
figure() 
hist(Y3,xbins) 
xlim([.05 6]) 
title(sprintf("Histogram for exponential distribution with N = " + N3)) 
xlabel("random variable values") 
ylabel("number of occurances") 

Y4 = -log(1-X4); % see page 172 of book for this transformation 
figure() 
hist(Y4,xbins) 
xlim([.05 6]) 
title(sprintf("Histogram for exponential distribution with N = " + N4)) 
xlabel("random variable values") 
ylabel("number of occurances") 
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c)

Y4 = -(1/.25)*log(1-X4); % see page 172 of book for this transformation 
figure() 
hist(Y4,xbins) 
xlim([.05 6]) 
title(sprintf("Histogram for exponential distribution with N = " + N4) + ", \lambda = 0.25",'interpreter', 'tex') 
xlabel("random variable values") 
ylabel("number of occurances") 

Y4 = -(1/.5)*log(1-X4); % see page 172 of book for this transformation 
figure() 
hist(Y4,xbins) 

31



xlim([.05 6]) 
title(sprintf("Histogram for exponential distribution with N = " + N4) + ", \lambda = 0.5",'interpreter', 'tex') 
xlabel("random variable values") 
ylabel("number of occurances") 

Y4 = -(1/.75)*log(1-X4); % see page 172 of book for this transformation 
figure() 
hist(Y4,xbins) 
xlim([.05 6]) 
title(sprintf("Histogram for exponential distribution with N = " + N4) + ", \lambda = 0.75",'interpreter', 'tex') 
xlabel("random variable values") 
ylabel("number of occurances") 

Y4 = -(1)*log(1-X4); % see page 172 of book for this transformation 
figure() 
hist(Y4,xbins) 
xlim([.05 6]) 
title(sprintf("Histogram for exponential distribution with N = " + N4) + ", \lambda = 1.00",'interpreter', 'tex') 
xlabel("random variable values") 
ylabel("number of occurances") 
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3

a)

xbins = -4:.2:4.2; 

Z = norminv(X4); 

figure() 
hist(Z,xbins) 
xlim([-4 4]) 
title(sprintf("Gaussian from rand(N,1) with N = " + N4) + ", \mu = 0, and \sigma^2 = 1",'interpreter', 'tex') 
xlabel("random variable values") 
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ylabel("number of occurances") 

Z = norminv(X2); 

figure() 
hist(Z,xbins) 
xlim([-4 4]) 
title(sprintf("Gaussian from rand(N,1) with N = " + N2) + ", \mu = 0, and \sigma^2 = 1",'interpreter', 'tex') 
xlabel("random variable values") 
ylabel("number of occurances") 

 

b)
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include derivation and explanation in report

c)

Z = norminv(X4, -1, 1); 
mu = mean(Z); 
variance = var(Z); 

fprintf("Mean for N = %d, true mean = -1, true var = 1: %f \n", N4, mu); 
fprintf("Var for N = %d, true mean = -1, true var = 1: %f \n", N4, variance); 

Z = norminv(X4, 1, 1); 
mu = mean(Z); 
variance = var(Z); 

fprintf("Mean for N = %d, true mean = 1, true var = 1: %f \n", N4, mu); 
fprintf("Var for N = %d, true mean = 1, true var = 1: %f \n", N4, variance); 

Z = norminv(X4, -1, .5); 
mu = mean(Z); 
variance = var(Z); 

fprintf("Mean for N = %d, true mean = -1, true var = .5: %f \n", N4, mu); 
fprintf("Var for N = %d, true mean = -1, true var = .5: %f \n", N4, variance); 

figure() 
hist(Z,xbins) 
xlim([-4 4]) 
title(sprintf("Gaussian from rand(N4,1) with N = " + N4) + ", \mu = -1, and \sigma^2 = .5",'interpreter', 'tex') 
xlabel("random variable values") 
ylabel("number of occurances") 

Z = norminv(X4, 1, .5); 
mu = mean(Z); 
variance = var(Z); 

fprintf("Mean for N = %d, true mean = 1, true var = .5: %f \n", N4, mu); 
fprintf("Var for N = %d, true mean = 1, true var = .5: %f \n", N4, variance); 

Z = norminv(X2, -1, 1); 
mu = mean(Z); 
variance = var(Z); 

fprintf("Mean for N = %d, true mean = -1, true var = 1: %f \n", N2, mu); 
fprintf("Var for N = %d, true mean = -1, true var = 1: %f \n", N2, variance); 

Z = norminv(X2, 1, 1); 
mu = mean(Z); 
variance = var(Z); 

fprintf("Mean for N = %d, true mean = 1, true var = 1: %f \n", N2, mu); 
fprintf("Var for N = %d, true mean = 1, true var = 1: %f \n", N2, variance); 

Z = norminv(X2, -1, .5); 
mu = mean(Z); 
variance = var(Z); 

fprintf("Mean for N = %d, true mean = -1, true var = .5: %f \n", N2, mu); 
fprintf("Var for N = %d, true mean = -1, true var = .5: %f \n", N2, variance); 

figure() 
hist(Z,xbins) 
xlim([-4 4]) 
title(sprintf("Gaussian from rand(N4,1) with N = " + N2) + ", \mu = -1, and \sigma^2 = .5",'interpreter', 'tex') 
xlabel("random variable values") 
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ylabel("number of occurances") 

Z = norminv(X2, 1, .5); 
mu = mean(Z); 
variance = var(Z); 

fprintf("Mean for N = %d, true mean = 1, true var = .5: %f \n", N2, mu); 
fprintf("Var for N = %d, true mean = 1, true var = .5: %f \n", N2, variance); 

Mean for N = 10000000, true mean = -1, true var = 1: -0.999986  
Var for N = 10000000, true mean = -1, true var = 1: 0.999689  
Mean for N = 10000000, true mean = 1, true var = 1: 1.000014  
Var for N = 10000000, true mean = 1, true var = 1: 0.999689  
Mean for N = 10000000, true mean = -1, true var = .5: -0.999993  
Var for N = 10000000, true mean = -1, true var = .5: 0.249922  
Mean for N = 10000000, true mean = 1, true var = .5: 1.000007  
Var for N = 10000000, true mean = 1, true var = .5: 0.249922  
Mean for N = 1000, true mean = -1, true var = 1: -0.974172  
Var for N = 1000, true mean = -1, true var = 1: 0.943474  
Mean for N = 1000, true mean = 1, true var = 1: 1.025828  
Var for N = 1000, true mean = 1, true var = 1: 0.943474  
Mean for N = 1000, true mean = -1, true var = .5: -0.987086  
Var for N = 1000, true mean = -1, true var = .5: 0.235869  
Mean for N = 1000, true mean = 1, true var = .5: 1.012914  
Var for N = 1000, true mean = 1, true var = .5: 0.235869  
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4)

a)

start with new values for Ms and Ns so computer doesnt overflow:

M1 = 10; 
M2 = 1000;
M3 = 10000; 
M4 = 100000; 

N1 = 1000000; 
N2 = 1000;
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N3 = 10000; 
N4 = 100000; 

X1 = rand(N1,M1); 
Sx1 = sum(X1,2); 
figure() 
hist(Sx1,50) 
title(sprintf("Sum of Uniform RVs with with N = " + N1 + ", M = " + M1)) 
xlabel("random variable values") 
ylabel("number of occurances") 

X2 = rand(N2,M2); 
Sx2 = sum(X2,2); 
figure() 
hist(Sx2,50) 
title(sprintf("Sum of Uniform RVs with with N = " + N2 + ", M = " + M2)) 
xlabel("random variable values") 
ylabel("number of occurances") 

% comment back in to run, but make take a while: 

% for larger since Matlab runs out of memory - go one by one 
Sx3 = zeros(M3, 1); 
for i = 1:N3 
    X3_i = rand(1,N3); 
    summation = sum(X3_i,'all'); 
    Sx3(i) = summation; 
end 
figure() 
hist(Sx3,50) 
title(sprintf("Sum of Uniform RVs with with N = " + N3 + ", M = " + M3)) 
xlabel("random variable values") 
ylabel("number of occurances") 

Sx4 = zeros(M4, 1); 
for i = 1:N4 
    X4_i = rand(1,N4); 
    summation = sum(X4_i,'all'); 
    Sx4(i) = summation; 
end 
figure() 
hist(Sx4,50) 
title(sprintf("Sum of Uniform RVs with with N = " + N4 + ", M = " + M4)) 
xlabel("random variable values") 
ylabel("number of occurances") 
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b)

Y1 = -log(1-X1); 
Sx1 = sum(Y1,2); 
figure() 
hist(Sx1,50) 
title(sprintf("Sum of Exponential RVs with with N = " + N1 + ", M = " + M1)) 
xlabel("random variable values") 
ylabel("number of occurances") 

Y2 = -log(1-X2); 
Sx2 = sum(Y2,2); 
figure() 
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hist(Sx2,50) 
title(sprintf("Sum of Exponential RVs with with N = " + N2 + ", M = " + M2)) 
xlabel("random variable values") 
ylabel("number of occurances") 

% comment back in to run, but make take a while: 

% for larger since Matlab runs out of memory - go one by one 
Sx3 = zeros(M3, 1); 
for i = 1:N3 
    X3_i = rand(1,N3); 
    Y3_i = -log(1-X3_i); 
    summation = sum(Y3_i,'all'); 
    Sx3(i) = summation; 
end 
figure() 
hist(Sx3,50) 
title(sprintf("Sum of Exponential RVs with with N = " + N3 + ", M = " + M3)) 
xlabel("random variable values") 
ylabel("number of occurances") 

Sx4 = zeros(M4, 1); 
for i = 1:N4 
    X4_i = rand(1,N4); 
    Y4_i = -log(1-X4_i); 
    summation = sum(Y4_i,'all'); 
    Sx4(i) = summation; 
end 
figure() 
hist(Sx4,50) 
title(sprintf("Sum of Exponential RVs with with N = " + N4 + ", M = " + M4)) 
xlabel("random variable values") 
ylabel("number of occurances") 

41



 

5)

M1 = 2; 
M2 = 6; 

N1 = 100; 
N2 = 1000000; 

a)

generate random samples for M independent Gaussian random variables using a linear transformation approach

42



Z1_1 = zeros(N1, M1); 
for i = 1:M1/2 
    U_1s_1 = rand(N1,1); 
    U_2s_1 = rand(N1,1); 

    Z1_1(:,(i*2)-1) = sqrt(-2*log(U_1s_1)).*cos(2*pi*U_2s_1); 
    Z1_1(:,(i*2)) = sqrt(-2*log(U_1s_1)).*sin(2*pi*U_2s_1); 

end 

figure() 
hist(Z1_1(:,1),200) 
xlim([-4 4]) 
title(sprintf("One independent Gaussian random variable with N = " + N1)) 
xlabel("random variable values") 
ylabel("number of occurances") 

Z2_1 = zeros(N2, M1); 
for i = 1:M1/2 
    U_1s_2 = rand(N2,1); 
    U_2s_2 = rand(N2,1); 

    Z2_1(:,(i*2)-1) = sqrt(-2*log(U_1s_2)).*cos(2*pi*U_2s_2); 
    Z2_1(:,(i*2)) = sqrt(-2*log(U_1s_2)).*sin(2*pi*U_2s_2); 

end 

figure() 
hist(Z2_1(:,1),200) 
xlim([-4 4]) 
title(sprintf("One independent Gaussian random variable with N = " + N2)) 
xlabel("random variable values") 
ylabel("number of occurances") 

Z1_2 = zeros(N1, M2); 
for i = 1:M2/2 
    U_1s_1 = rand(N1,1); 
    U_2s_1 = rand(N1,1); 

    Z1_2(:,(i*2)-1) = sqrt(-2*log(U_1s_1)).*cos(2*pi*U_2s_1); 
    Z1_2(:,(i*2)) = sqrt(-2*log(U_1s_1)).*sin(2*pi*U_2s_1); 

end 

Z2_2 = zeros(N2, M2); 
for i = 1:M2/2 
    U_1s_2 = rand(N2,1); 
    U_2s_2 = rand(N2,1); 

    Z2_2(:,(i*2)-1) = sqrt(-2*log(U_1s_2)).*cos(2*pi*U_2s_2); 
    Z2_2(:,(i*2)) = sqrt(-2*log(U_1s_2)).*sin(2*pi*U_2s_2); 

end 
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b) and c)

% start with Covariance Matrix with zero correlation: 
fprintf("rho 0:\n");
rho = 0; 

% rho 0, M = 2, N = 100 
C1 = get_covariance_matrix(rho, M1); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W1_1_rho0 = zeros(M1); 
for i = 1:N1 
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    W1_1_rho0(:,i) = A1*(Z1_1(i,:)'); 
end 

C_w = cov(W1_1_rho0') 
C_z = cov(Z1_1) 

% rho 0, M = 2, N = 1000000 
C1 = get_covariance_matrix(rho, M1); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W2_1_rho0 = zeros(M1); 
for i = 1:N2 
    W2_1_rho0(:,i) = A1*(Z2_1(i,:)'); 
end 

figure() 
hist3(W2_1_rho0','Nbins',[200 200],'CDataMode','auto','FaceColor','interp') 
shading flat; 
xlim([-4 4]) 
ylim([-4 4]) 
xlabel("random variable values for M_1") 
ylabel("random variable values for M_2") 
title("Histogram of two uncorrelated Gaussian random variables") 
view(2) 
grid off; 

C_w = cov(W2_1_rho0') 
C_z = cov(Z2_1) 

% rho 0, M = 10, N = 100 
C1 = get_covariance_matrix(rho, M2); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W1_2_rho0 = zeros(M2); 
for i = 1:N1 
    W1_2_rho0(:,i) = A1*(Z1_2(i,:)'); 
end 

C_w = cov(W1_2_rho0') 
C_z = cov(Z1_2) 

% rho 0, M = 10, N = 1000000 
C1 = get_covariance_matrix(rho, M2); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W2_2_rho0 = zeros(M2); 
for i = 1:N2 
    W2_2_rho0(:,i) = A1*(Z2_2(i,:)'); 
end 

C_w = cov(W2_2_rho0') 
C_z = cov(Z2_2) 

% repeat with rho = .25: 
fprintf("rho .1:\n"); 
rho = .25;

% rho 0, M = 2, N = 100 
C1 = get_covariance_matrix(rho, M1); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W1_1_rho0 = zeros(M1); 
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for i = 1:N1 
    W1_1_rho0(:,i) = A1*(Z1_1(i,:)'); 
end 

C_w = cov(W1_1_rho0') 
C_z = cov(Z1_1) 

% rho 0, M = 2, N = 1000000 
C1 = get_covariance_matrix(rho, M1); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W2_1_rho0 = zeros(M1); 
for i = 1:N2 
    W2_1_rho0(:,i) = A1*(Z2_1(i,:)'); 
end 

figure() 
hist3(W2_1_rho0','Nbins',[200 200],'CDataMode','auto','FaceColor','interp') 
shading flat; 
xlim([-4 4]) 
ylim([-4 4]) 
xlabel("random variable values for M_1") 
ylabel("random variable values for M_2") 
title("Histogram of two correlated Gaussian random variables with \rho = " + rho) 
view(2) 
grid off; 

C_w = cov(W2_1_rho0') 
C_z = cov(Z2_1) 

% rho 0, M = 10, N = 100 
C1 = get_covariance_matrix(rho, M2); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W1_2_rho0 = zeros(M2); 
for i = 1:N1 
    W1_2_rho0(:,i) = A1*(Z1_2(i,:)'); 
end 

C_w = cov(W1_2_rho0') 
C_z = cov(Z1_2) 

% rho 0, M = 10, N = 1000000 
C1 = get_covariance_matrix(rho, M2); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W2_2_rho0 = zeros(M2); 
for i = 1:N2 
    W2_2_rho0(:,i) = A1*(Z2_2(i,:)'); 
end 

C_w = cov(W2_2_rho0') 
C_z = cov(Z2_2) 

% repeat with rho = .5: 
fprintf("rho .5:\n"); 
rho = .5; 

% rho 0, M = 2, N = 100 
C1 = get_covariance_matrix(rho, M1); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 
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W1_1_rho0 = zeros(M1); 
for i = 1:N1 
    W1_1_rho0(:,i) = A1*(Z1_1(i,:)'); 
end 

C_w = cov(W1_1_rho0') 
C_z = cov(Z1_1) 

% rho 0, M = 2, N = 1000000 
C1 = get_covariance_matrix(rho, M1); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W2_1_rho0 = zeros(M1); 
for i = 1:N2 
    W2_1_rho0(:,i) = A1*(Z2_1(i,:)'); 
end 

C_w = cov(W2_1_rho0') 
C_z = cov(Z2_1) 

figure() 
hist3(W2_1_rho0','Nbins',[200 200],'CDataMode','auto','FaceColor','interp') 
shading flat; 
xlim([-4 4]) 
ylim([-4 4]) 
xlabel("random variable values for M_1") 
ylabel("random variable values for M_2") 
title("Histogram of two correlated Gaussian random variables with \rho = " + rho) 
view(2) 
grid off; 

% rho 0, M = 10, N = 100 
C1 = get_covariance_matrix(rho, M2); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W1_2_rho0 = zeros(M2); 
for i = 1:N1 
    W1_2_rho0(:,i) = A1*(Z1_2(i,:)'); 
end 

C_w = cov(W1_2_rho0') 
C_z = cov(Z1_2) 

% rho 0, M = 10, N = 1000000 
C1 = get_covariance_matrix(rho, M2); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W2_2_rho0 = zeros(M2); 
for i = 1:N2 
    W2_2_rho0(:,i) = A1*(Z2_2(i,:)'); 
end 

C_w = cov(W2_2_rho0') 
C_z = cov(Z2_2) 

% repeat with rho = .95: 
fprintf("rho .95:\n"); 
rho = .95;

% rho 0, M = 2, N = 100 
C1 = get_covariance_matrix(rho, M1); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 
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W1_1_rho0 = zeros(M1); 
for i = 1:N1 
    W1_1_rho0(:,i) = A1*(Z1_1(i,:)'); 
end 

C_w = cov(W1_1_rho0') 
C_z = cov(Z1_1) 

% rho 0, M = 2, N = 1000000 
C1 = get_covariance_matrix(rho, M1); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W2_1_rho0 = zeros(M1); 
for i = 1:N2 
    W2_1_rho0(:,i) = A1*(Z2_1(i,:)'); 
end 

C_w = cov(W2_1_rho0') 
C_z = cov(Z2_1) 

figure() 
hist3(W2_1_rho0','Nbins',[200 200],'CDataMode','auto','FaceColor','interp') 
shading flat; 
xlim([-4 4]) 
ylim([-4 4]) 
xlabel("random variable values for M_1") 
ylabel("random variable values for M_2") 
title("Histogram of two correlated Gaussian random variables with \rho = " + rho) 
view(2) 
grid off; 

% rho 0, M = 10, N = 100 
C1 = get_covariance_matrix(rho, M2); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W1_2_rho0 = zeros(M2); 
for i = 1:N1 
    W1_2_rho0(:,i) = A1*(Z1_2(i,:)'); 
end 

C_w = cov(W1_2_rho0') 
C_z = cov(Z1_2) 

% rho 0, M = 10, N = 1000000 
C1 = get_covariance_matrix(rho, M2); 
[P1,D1] = eig(C1); 
A1 = P1 * sqrt(D1); 

W2_2_rho0 = zeros(M2); 
for i = 1:N2 
    W2_2_rho0(:,i) = A1*(Z2_2(i,:)'); 
end 

C_w = cov(W2_2_rho0') 
C_z = cov(Z2_2) 

function C = get_covariance_matrix(rho,M) 
    C = zeros(M, M); 
    for i = 1:M
        for j = 1:M 
            power = i - j; 
            C(i,j) = rho^(abs(power)); 
        end 
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    end 
end 

rho 0: 

C_w =

    1.0722    0.1664 
    0.1664    0.9323 

C_z =

    1.0722    0.1664 
    0.1664    0.9323 

C_w =

    0.9982   -0.0014 
   -0.0014    1.0021 

C_z =

    0.9982   -0.0014 
   -0.0014    1.0021 

C_w =

    0.9910   -0.0624   -0.1506    0.0146   -0.0253   -0.1197 
   -0.0624    0.9235   -0.0760   -0.0508    0.1021   -0.0580 
   -0.1506   -0.0760    1.2316    0.0375    0.0713    0.0442 
    0.0146   -0.0508    0.0375    0.9462    0.1329   -0.1767 
   -0.0253    0.1021    0.0713    0.1329    1.0472    0.0760 
   -0.1197   -0.0580    0.0442   -0.1767    0.0760    1.2272 

C_z =

    0.9910   -0.0624   -0.1506    0.0146   -0.0253   -0.1197 
   -0.0624    0.9235   -0.0760   -0.0508    0.1021   -0.0580 
   -0.1506   -0.0760    1.2316    0.0375    0.0713    0.0442 
    0.0146   -0.0508    0.0375    0.9462    0.1329   -0.1767 
   -0.0253    0.1021    0.0713    0.1329    1.0472    0.0760 
   -0.1197   -0.0580    0.0442   -0.1767    0.0760    1.2272 

C_w =

    0.9975   -0.0002   -0.0007   -0.0014    0.0005   -0.0007 
   -0.0002    1.0011   -0.0007    0.0002    0.0019    0.0010 
   -0.0007   -0.0007    0.9990   -0.0011    0.0005   -0.0010 
   -0.0014    0.0002   -0.0011    0.9987    0.0007    0.0010 
    0.0005    0.0019    0.0005    0.0007    0.9989    0.0001 
   -0.0007    0.0010   -0.0010    0.0010    0.0001    0.9990 

C_z =

    0.9975   -0.0002   -0.0007   -0.0014    0.0005   -0.0007 
   -0.0002    1.0011   -0.0007    0.0002    0.0019    0.0010 
   -0.0007   -0.0007    0.9990   -0.0011    0.0005   -0.0010 
   -0.0014    0.0002   -0.0011    0.9987    0.0007    0.0010 
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    0.0005    0.0019    0.0005    0.0007    0.9989    0.0001 
   -0.0007    0.0010   -0.0010    0.0010    0.0001    0.9990 

rho .1: 

C_w =

    0.8237    0.1806 
    0.1806    1.1459 

C_z =

    1.0722    0.1664 
    0.1664    0.9323 

C_w =

    1.0020    0.2520 
    0.2520    0.9993 

C_z =

    0.9982   -0.0014 
   -0.0014    1.0021 

C_w =

    0.9599    0.1109    0.0305    0.1511   -0.0504   -0.0397 
    0.1109    0.9273    0.3799    0.2140   -0.0236    0.0002 
    0.0305    0.3799    1.2140    0.3295    0.0241    0.0312 
    0.1511    0.2140    0.3295    1.3399    0.4375    0.0808 
   -0.0504   -0.0236    0.0241    0.4375    1.0552    0.3518 
   -0.0397    0.0002    0.0312    0.0808    0.3518    0.9937 

C_z =

    0.9910   -0.0624   -0.1506    0.0146   -0.0253   -0.1197 
   -0.0624    0.9235   -0.0760   -0.0508    0.1021   -0.0580 
   -0.1506   -0.0760    1.2316    0.0375    0.0713    0.0442 
    0.0146   -0.0508    0.0375    0.9462    0.1329   -0.1767 
   -0.0253    0.1021    0.0713    0.1329    1.0472    0.0760 
   -0.1197   -0.0580    0.0442   -0.1767    0.0760    1.2272 

C_w =

    0.9980    0.2494    0.0625    0.0164    0.0021    0.0017 
    0.2494    0.9999    0.2499    0.0624    0.0167    0.0055 
    0.0625    0.2499    0.9987    0.2491    0.0615    0.0156 
    0.0164    0.0624    0.2491    0.9977    0.2497    0.0620 
    0.0021    0.0167    0.0615    0.2497    1.0003    0.2504 
    0.0017    0.0055    0.0156    0.0620    0.2504    0.9994 

C_z =

    0.9975   -0.0002   -0.0007   -0.0014    0.0005   -0.0007 
   -0.0002    1.0011   -0.0007    0.0002    0.0019    0.0010 
   -0.0007   -0.0007    0.9990   -0.0011    0.0005   -0.0010 
   -0.0014    0.0002   -0.0011    0.9987    0.0007    0.0010 
    0.0005    0.0019    0.0005    0.0007    0.9989    0.0001 
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   -0.0007    0.0010   -0.0010    0.0010    0.0001    0.9990 

rho .5: 

C_w =

    0.8232    0.4312 
    0.4312    1.1114 

C_z =

    1.0722    0.1664 
    0.1664    0.9323 

C_w =

    1.0024    0.5020 
    0.5020    0.9999 

C_z =

    0.9982   -0.0014 
   -0.0014    1.0021 

C_w =

    0.7909    0.4624    0.1978    0.2215    0.1309   -0.0477 
    0.4624    1.0793    0.6659    0.4113    0.1926    0.0127 
    0.1978    0.6659    1.2012    0.6479    0.2995    0.1525 
    0.2215    0.4113    0.6479    1.3607    0.7221    0.3519 
    0.1309    0.1926    0.2995    0.7221    1.1478    0.5838 
   -0.0477    0.0127    0.1525    0.3519    0.5838    1.0799 

C_z =

    0.9910   -0.0624   -0.1506    0.0146   -0.0253   -0.1197 
   -0.0624    0.9235   -0.0760   -0.0508    0.1021   -0.0580 
   -0.1506   -0.0760    1.2316    0.0375    0.0713    0.0442 
    0.0146   -0.0508    0.0375    0.9462    0.1329   -0.1767 
   -0.0253    0.1021    0.0713    0.1329    1.0472    0.0760 
   -0.1197   -0.0580    0.0442   -0.1767    0.0760    1.2272 

C_w =

    0.9974    0.4998    0.2497    0.1255    0.0625    0.0324 
    0.4998    1.0001    0.4994    0.2491    0.1248    0.0625 
    0.2497    0.4994    0.9988    0.4991    0.2492    0.1256 
    0.1255    0.2491    0.4991    0.9984    0.4991    0.2505 
    0.0625    0.1248    0.2492    0.4991    0.9979    0.4996 
    0.0324    0.0625    0.1256    0.2505    0.4996    1.0014 

C_z =

    0.9975   -0.0002   -0.0007   -0.0014    0.0005   -0.0007 
   -0.0002    1.0011   -0.0007    0.0002    0.0019    0.0010 
   -0.0007   -0.0007    0.9990   -0.0011    0.0005   -0.0010 
   -0.0014    0.0002   -0.0011    0.9987    0.0007    0.0010 
    0.0005    0.0019    0.0005    0.0007    0.9989    0.0001 
   -0.0007    0.0010   -0.0010    0.0010    0.0001    0.9990 
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rho .95: 

C_w =

    0.8839    0.8822 
    0.8822    0.9878 

C_z =

    1.0722    0.1664 
    0.1664    0.9323 

C_w =

    1.0024    0.9521 
    0.9521    1.0015 

C_z =

    0.9982   -0.0014 
   -0.0014    1.0021 

C_w =

    1.2860    1.2246    1.1254    1.1056    1.0465    1.0045 
    1.2246    1.2564    1.1603    1.1295    1.0775    1.0397 
    1.1254    1.1603    1.1445    1.1001    1.0550    1.0212 
    1.1056    1.1295    1.1001    1.1685    1.1222    1.0759 
    1.0465    1.0775    1.0550    1.1222    1.1859    1.1444 
    1.0045    1.0397    1.0212    1.0759    1.1444    1.2158 

C_z =

    0.9910   -0.0624   -0.1506    0.0146   -0.0253   -0.1197 
   -0.0624    0.9235   -0.0760   -0.0508    0.1021   -0.0580 
   -0.1506   -0.0760    1.2316    0.0375    0.0713    0.0442 
    0.0146   -0.0508    0.0375    0.9462    0.1329   -0.1767 
   -0.0253    0.1021    0.0713    0.1329    1.0472    0.0760 
   -0.1197   -0.0580    0.0442   -0.1767    0.0760    1.2272 

C_w =

    0.9987    0.9488    0.9017    0.8565    0.8132    0.7727 
    0.9488    0.9989    0.9494    0.9019    0.8564    0.8137 
    0.9017    0.9494    0.9995    0.9494    0.9014    0.8567 
    0.8565    0.9019    0.9494    0.9993    0.9488    0.9016 
    0.8132    0.8564    0.9014    0.9488    0.9985    0.9488 
    0.7727    0.8137    0.8567    0.9016    0.9488    0.9989 

C_z =

    0.9975   -0.0002   -0.0007   -0.0014    0.0005   -0.0007 
   -0.0002    1.0011   -0.0007    0.0002    0.0019    0.0010 
   -0.0007   -0.0007    0.9990   -0.0011    0.0005   -0.0010 
   -0.0014    0.0002   -0.0011    0.9987    0.0007    0.0010 
    0.0005    0.0019    0.0005    0.0007    0.9989    0.0001 
   -0.0007    0.0010   -0.0010    0.0010    0.0001    0.9990 
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