
ECE 449 Honors Option
Attempting to Speed Up Maltab Simulations Using

Android Programming
Jacob Honer

College of Electrical and Computer Engineering
Michigan State University

East Lansing, United States of America
honerja1@msu.edu

Abstract—This paper will outline the process of converting
Matlab files to java to be run on Android in an attempt to speed
up simulations through using RenderScript on Android. Render-
Script is a framework for running computationally intensive tasks
on Android, that utilizes multiple CPU cores or the phones GPU,
depending on what process the library deems to be the fastest.
RenderScript, therefore, has different performances on different
phones, but Google claims that it picks the fastest process possible
for each phone. This paper will first explain how the Matlab code
was converted to Android and ran using exclusively the Anroid
CPU. Next, the computationally intensive parts of each simulation
were converted to C and stored in a RenderScript script, where
the Android CPU would transfer the required data and where
the required computations would be performed. After computing,
the Android CPU would then grab the updated data from the
script and display the visualized information on the Android app
if that process is desired. This paper will breakdown this process
and share data from three different Matlab converted scripts
to Android. This paper will over an explanation for results and
future improvements that could perhaps be made.

I. INTRODUCTION

Matlab code, being written in C and C++, is already
quite are fast to begin with, as C is known by many to be
one of the most efficient programming languages. Despite
being generally very fast, Matlab code alone is limited to
a computers CPU. This means that all computations in a
regular Matlab script are done in series. Running complex
computations in parallel many times drastically speeds up
performance. Traditionally, as far as Maltab is concerned,
people will use Cuda to speed up computations. Cuda is a
parallel computing platform that utilizes a computers GPU
to run computations. Traditionally, people will create Cuda
script, pass data to the Cuda script from Matlab, perform the
computations, and then collect the data from the Cuda script.
Obviously transferring the data to Cuda takes time, but if the
parallel computation time on the GPU is significantly faster
the CPU, using Cuda can lead to some very impressive speed
up times.

Here, we wanted to consider if it made sense to use external
computations. Lets say someone had a computer that didn’t
have a GPU, but still wanted to speed up Matlab computations.
Lets say that this person also purchased a high quality Android

phone. We wanted to explore if it would make any sense
for that person to try to use the computation ability of the
Android phone for speeding up their Matlab code. This paper
will not explore in particular how that interfacing works,
but we will explore some basic comparisons of Matlab code
speeds to the computations speeds achievable on Android. We
decided to use RenderScript to try to speed up computations.
RenderScript works extremely similarly to Cuda, but is an
Android library that utilizes the multiple CPU cores or GPU
of an Android device for faster computations.

In addition to simply speeding up computations on Android,
we also wanted to explore the feasibility of running simula-
tions on Android apps. This could be a good learning tool,
as students could download an app that shows a bunch of
different simulations to their Android phone, and using that
app better understand a concept that is being explored in
class. Rather than every student having to have a computer
with Matlab, if it is feasible to run simulations on Android,
students can simply use their phones. Furthermore, Android
is free to use for all, so the hastle of making sure each
students has a Matlab license could be avoided. With the new
Windows update allowing for Android apps to be ran locally
on Windows, the scope of Android apps and their use in
education has perhaps turned a corner! It is quite possible that
we will see Android be a bigger and bigger part of education
moving forward, especially if the Android OS could handle
the rigorous computations that many computers handle with
ease. Through this project, we wanted to explore this idea.

II. METHOD

A. Converting code to java

The first thing to be performed was to convert the Matlab
code to java so that it could be run on the Android CPU.
Overall, this was a rather straight forward process. All static
variables were simply copied over to the java code and updated
to match the java initialization criteria. The initialization of
larger arrays was a less straight forward process, as some
of the short cuts used in Matlab did not exist in java, but
with some basic coding background, it was easy to make
sure that the initialization all matched. The Android debugger



Fig. 1. Matlab for loop for second time step of computations in linesource.m file

Fig. 2. Java for loop for second time step of computations in linesource.m file

was also very helpful in making sure that the type, size, and
initialization information of each variable was correct before
any computations were performed.

The biggest thing to keep in mind when converting the code
was the difference between indexing arrays in Matlab vs in
java. In Matlab, array indexing starts with 1, where as it start
in 0 for java. This became particularly important where for
loops are concerned. Caution was taken to make sure that the
java computations precisely matched the Matlab computations.
An example of two equivalent codes, but one in Matlab and
one in java can be seen in Fig. 1 and Fig. 2. Notice the subtle
differences in syntax of the loop.

One of the problems that was quickly discovered was that
the Android app didn’t have enough allocated CPU storage
to run the simulation. Each Android app can use a maximum
of 500 MB, regardless of how much RAM a phone has. This
means that all variables and processes must stay below this
500 MB limit or the app will crash. Interestingly, RenderScript
is exempt from this requirement, but in our case, where we
transfer all computations back to the CPU and the Render-
Script script does not initialize new variables, this is simply
something to know. If no visualization was required, this might
have been helpful.

Upon inspection of the Matlab code, it was found that
the Matlab code basically used a 3D array to record all
computations that happen in the scripts lifetime. Each 2D grid
was saved for each time-step. For example, in linesource.m,
each grid was 401x401 doubles, and all 1001 timesteps were
saved, so the total array in Matlab help 401x401x1001 doubles.
This amounts to 1.29 GB size for this single array, which far
exceeds the 500 MB max that Android offers.

Fig. 3. Visualization of how RenderScript allocations were initialized

I quickly realized that it was unnecessary to save all this
data, as the visualization took place in real-time and the
computations only used data from the previous two time-steps.
This meant that I was able to modify the code to only store
three 2D arrays, meaning that array that was 1.29 GB in size
was now only 3.68 MB, which was much more reasonable for
an Android app. This change did not alter the computations
at all. The only thing that it did mean was that the code had
to basically shift the array after each update, so that a the
array for two time-steps back was properly set, as well as the
array for one time-step back, and then the array for the current
time-step was reinitialized. Properly setting or initializing the



Fig. 4. RenderScript initialization in vibratingmembrane simulation

arrays might add minimally to the duration of each update,
but this should be negligible and allowed for the code to run
on Android. This method is also far less wasteful with respect
to the devices memory. In addition, this would allow for the
2D arrays to be significantly larger, having a much better
resolution for the simulations, on both Android and Matlab.

After this process, the code was able to run on the java CPU
with no difficulties!

B. Converting computations to RenderScript

Converting the computations to RenderScript was definitely
the most difficult part of this project. Like many other par-
allel computing libraries or methods, RenderScript does not
generate very specific errors, so debugging can be particularly
difficult.

We first had to handle the initialization process of Ren-
derScript. We first create a RenderScript object in java. We
next created the script. We set all of the variable to the script,
basically passing all constant values in the java code used in

computations to be constants in the script object. Lastly, we
had to create all of our RenderScript allocations for our arrays.
What we did was basically create an allocation of allocations.
All y-direction indices will be passed to an allocation that
acts essentially as a 1D array, and then each of these 1D
array allocations will be passed to their corresponding index
of another 1D array of allocations, serving as x-direction
indices. A graphic demonstrating how this works out visually
can be seen in Fig. 3. After these initialization, the java
variables were passed, which has to happen after each update
as well, then these allocations were passed to the script.
How these allocations were initialized gives some insight
into how Renderscipt attempts to parallelize the computations.
RenderScript only works with 1D arrays. In this configuration,
each y-direction array runs its computations in parallel. So, for
linesource.m, where our grid is 401x401 in size, Renderscipt
computes 401 different scripts, where each scripts does 401
computations in parallel. Perhaps converting the 401x401 array
to a 1x(401*401) array would be quicker, but this would



require a more complex indexing process in the computations,
would require converting the array back and forth, which takes
time, and it is unlikely that it would speed up computations
any further with all things considered.

The initialization process was organized in a single method,
and each Matlab converted script follows a similar process.
This process is shown in Fig. 4. This figure in particular may
be a good reference if this work is to be replicated.

Fig. 5. Visualization of how RenderScript allocations were initialized

The RenderScript updating process will now be outlined.
We first initialize a new 2D grid in the form of allocations
of allocations, as outlined above, where the returned response
from RenderScript will be stored. Next, we perform our com-
putation and save its responses to these initialized allocations
of allocations. We destroy the variable that held the data from
two time-steps back, essentially freeing that memory, and then
we shift our arrays so that what was the array from one
time-step back becomes the array from two time-steps back,
the array that was the current data becomes the array for
one time-step back, and then the computed responses from
the script become the current data. Lastly, we re-pass the
array from one time-step back and two time-steps back to the
RenderScript object, and iterate our time variable. Although
it is not fully necessary to include the code in this report, it
has been included in Fig. 5, again, for reference if this work
is ever to be replicated.

Next, we will discuss how the RenderScript script performs
computations. All in all, this is probably the most straight
forward process of the RenderScript implementation. All of
the values that are needed are already passed to the script.
We simply iterate through the arrays and perform the com-

putations, then save them to our output array. The one thing
to note is that you can’t simply access values within arrays
as one would normally. You have to use rsGetElementAt() to
get the desired index of an array, and it is a good practice to
specify the variable type that you are calling (i.e. rsGetEle-
mentAt double()).

Fig. 6. Visualization of simulations on Android (Left to right: linesource,
vibratingmembrane, and centered2Dgaussian

Fig. 7. Visualization of simulations on Matlab for comparison (Left to right:
linesource, vibratingmembrane, and centered2Dgaussian

C. Visualizing on Android

The next challenge that was faced in converting the Matlab
code was how to handle visualization. Matlab has many conve-
nient graphing tools, and is arguably the best software to exist
for 3D graphing. Android, unfortunately, has no equivalent
libraries or way to visualize 3D graphs, hence, I had to get
creative on how I was to visualize these simulations. I settled
on a rather straight forward visualization. What I did was
convert the x and y grid to a bitmap of equal dimension. For
the z component, I took the value in the array corresponding
to each x and y index, which corresponded with the z value
of the graph, and I scaled that value by 255. If that value
was positive, I plotted it on the bitmap as red, with the
intensity corresponding with the scaled value. Likewise, if the
value was negative, I plotted it on the bitmap as blue, with
again, the intensity corresponding with the scaled value. This
meant that all positive z values appeared as red and negative
as blue on a bitmap that took on a birds-eye view of the
3D graph. This provided a clear visualization of what was
going on in the simulation through a simple, computationally
minimal, process. This visualization can be seen in Fig. 6. For
comparisons sake, the birds eye views of the same simulations
ran in Matlab can be seen in Fig. 7. As we can see, the
two are very comparable! With a little bit more work, the
Android simulation can definitely approach the clarity of the
Matlab simulations, but due to time constraints and the fact
that this project didn’t focus on visualization, the visualization
was deemed good enough.



Fig. 8. Total execution time for Matlab, Android CPU, and RenderScript

D. Results

This section will outline the results and takeaways from
this project. The time of execution for the Matlab script,
Android CPU, and Android RenderScript can be found in Fig.
8. All collected data omitted visualization time, as the Matlab
visualization took longer than the Android visualization, but
it was also much more comprehensive; the two aren’t very
comparable, so we will not compare them in this paper. The
Matlab scripts were ran on a 2015 MacBook Pro with a
2.7 GHz Dual-Core Intel Core i5 Processor and 8 GB 1867
MHz DDR3 Memory. The Android phone used was the Sony
Experia XZ Premium, model G8142, equipped with 8 CPU
cores and 3.728 GB available RAM.

As we can see, the Android CPU has a generally comparable
performance to the Matlab scripts. This makes sense, as the
Matlab CPU frequency is 2.7 GHz and the Sony phones
CPU frequency is 300 MHz - 2.458 GHz. In general, the
Matlab performed quicker than the Android CPU, and this
can probably be explained by the quicker CPU and more
RAM. The discrepancies between the MacBook Pro’s OS and
Android’s OS are also likely to blame to some extent. One
case where the Android out performed the Matlab was for
the linesource simulation. This is perhaps because the Matlab
code was using most of the CPU, as this was the highest
resolution simulation ran. This perhaps slowed down the script.
The Android code used the more efficient array logic, however,
outlined in Section A, keeping the RAM relatively available.
Given my experience, this is often something that slows down
computations, as it takes time to free previously used by no
longer relevant memory.

Unfortunately, the RenderScript did not improve perfor-
mance at all. The real reason for this is that it simply took
too much time to pass the data to the RenderScript script and
then collect that data after the computation was performed.
This is many times the gridlock of speeding up a program
using parallel programming, and I believe this to be the case
here.

E. Discussion

RenderScripts failure to speed up computations was disap-
pointing, but not entirely unexpected. Computers tend to out
perform mobile phones in all areas of computation and speed,
simply because the two devices have different motivations for
their existence. Not many people need their phones to perform
massive computations, so phones usually don’t prioritize speed
and many don’t have a GPU. Furthermore, with phones always
being connected to the internet, many find it more logical
to simply use cloud computing or other methods to perform

complex computations and then share that data with phones;
not many people wish to perform these computations locally.

The biggest pitfall here appears to be that passing variables
to RenderScript is extremely slow, especially compared to the
simplicity of the computations used in this paper. It would be
ideal to keep all variables in RenderScript and not have to pass
them back and forth. In this case, passing variables back and
forth was required in order to visualize what was going on, but
future work might explore how well RenderScript performs if
variables stay local to the script with no visualization. Future
work can also perhaps sample every 10 or so frames, so that
data transfer back and forth is not every update, but every
few updates. This would hinder the visualization smoothness,
but the user would still be able to get a general idea of
what is going on in the simulation and it should improve
RenderScript’s computation time. Future work should also
explore having the entire script work with exclusively 1D
arrays, as this would allow Renderscipt to be entirely free in
its parallelization and not constrained by the users 2D bounds.
This would add to the complexity of the script and to the
complexity of the code in general, but might make it faster.

Other work can look into how to speed up Matlab scripts
with Android perhaps enhancing computation speed. It is
possible to pass data between and Android phone and a
computer in Matlab using Bluetooth. Is there a way to utilize
this communication to improve the script’s speed? This is a
primitive idea that can perhaps be explored in the future.

All things considered, this paper did not explicitly show
that RenderScript speeds up computation, but there are many
sources out there that indicate that it can. Given my experience,
using RenderScript in machine-learning applications sped up
computations by over 8 times. This was not demonstrated here,
most likely due to the limitations outlined above. For context,
our script performed around twelve arithmetic processes; the
machine-learning applications that I am familiar with that use
RenderScript performed well into the thousands of arithmetic
processes per script.

This paper does show that Android could be a powerful tool
in education! The simulations were comparably fast, and on
Android, they would be much more portable and accessible
to students around the world. Although it takes a little bit
more work to generate an Android app, educators should
maybe consider incorporating Android into their demos and
curriculum, as it is proven to be fast, portable, accessible,
easy to understand and use, and can incorporate interactive
activities that take advantage of touch and sound easier than
a computer.


