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Building robust autonomous systems through a traditional engineering 
approach is challenging - if not impossible. Recently, machine learning 
has been a solution to this difficulty, as it allows robots to learn the 
complex dynamics of their environment and actions through either 
direct supervision or reinforcement. Both learning modes have their 
drawbacks; motor supervision is tedious for the trainer and 
reinforcement takes increased time. Reinforcement learning promises 
to make the training process easier and allows for better 
generalization. The pairing of the two may create a more efficient 
training process. Here, in addition to the above learning modes, we 
introduce an unsupervised learning mode, or practice mode, where 
the system generates its own actions and learns by observing the 
effects of said actions. Our robot learning framework uses multiple 
teaching modes (motor-supervision, reinforcement, and practice), and 
we demonstrate its capabilities through a series of experiments 
involving navigation tasks using a single stereo-camera. Unlike most 
neural networks, Developmental Networks (DNs), used in this work, 
do not rely on gradient descent-based learning algorithms, and are 
therefore able to learn optimally, through real-time interactions with 
their environment, across a single lifetime. In this work we analyze 
and discuss the effects of each training mode on a DN’s performance 
of a navigation task.

INTRODUCTION

Our experimental DN setup followed that of our previous 
work. (1) The input is grabbed from a small, 135×135 pixel, 
mask on both the left and right images (green square in the 
figure below). (2) The hidden neurons are grouped into nine 
columns (inhibition zones), each column sharing the same 
initial receptive fields. (3) The input image is divided into 
3×3 non-overlapping subwindows, of size 45 × 45 pixels, 
where each subwindow is the receptive field for the neurons 
in its respective column. (4) The number of hidden neurons 
is limited. We used our optimized DN version that uses the 
GPU and multiple CPU cores of the Android phone for faster 
update times; this allowed our training to approach real-time 
speeds. 

The data in our experiment consisted of three stereo 
image sequences (Nav-1, Nav-2, Nav-3) collected in real-
time from an outdoor walkway setting like the one in Fig. 1. 
Nav-1, Nav-2, and Nav-3 contained 6502, 6686 and 5508 
frames, respectively. In this experiment, we used the even 
frames of each sequence for supervising, reinforcing, and 
practicing, and the odd frames were used as testing frames 
where we tested the DN’s performance after training epochs 
in frozen mode, meaning that the DNs weights do not 
update with each update. The DNs multisensory ability
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This work demonstrated that our system is capable of 
learning through multiple training modes and how our 
proposed training methods can improve training efficiency 
and performance of a DN. These methods have the 
potential to drive future autonomous systems.
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Direct supervision is the most efficient training method 
because it provides correct labels to the system. However, 
labeling is difficult for a human to do in real-time and 
becomes impossible as the number of motors supervised 
increases. Therefore, we need new real-time learning 
methods that are less tedious for a human trainer to 
manage. Here, we explore training a DN with the direct 
supervision method that we used in prior work, in addition to 
a reinforcement method and a practice method, which 
attempts to address the above concerns.

Ideally, we would train our system frame by frame over a 
single lifetime. This is so that the system can learn directly 
how its actions affect both itself and its environment. This 
process lends itself to ideal training being on real, physical 
systems. In order to quantify our new training methods, 
however, we opted for batch training so that we would have 
more control over our training, and repeatable and 
observable changes. Our training is still frame incremental.

Reinforcement Mode
The reinforcement method proposed follows a reward 

and punishment model. This model was inspired by the 
human body’s secretion of either dopamine or serotonin as 
a biological reinforcement in response to reinforcement in 
the real-world. When the DN produces a good predication, 
we reinforce with dopamine, and when it produces a bad 
predication, we punish with serotonin. The effects of this 
dopamine and serotonin effect the motor and hidden 
neurons of the DN differently.

For motor neurons, the effects are to weaken or 
strengthen the pre-action potential of the target motor 
neurons, which determines their likelihood to fire. Dopamine 
increases the pre-action potential, and inversely, serotonin 
decreases the pre-action potential of motor neurons. 

!! = "!"# (1 − $ %!#+ β%!$)

Equation 1 shows how the “unbiased” pre-action 
potential, "!", is the scaled by the serotonin level, %!#, and 
the dopamine level, %!$, to become the pre-action potential, 
!!. The #, $, and β, and are constants, set to 1.0, 0.9, and 
0.3, respectively. These values can be optimized 
experimentally.

Arden Knoll and Jacob Honer

Developmental Robot Learning through Multiple Teaching Modes

For the hidden neurons, dopamine and serotonin 
increases the learning rate, %%, of the firing neuron, and 
decreases the retention rate, %&, so that neurons can better 
memorize reinforcement events.

%% =min 1+%!$ +%!#
1+ -(/!)

/! , 1 ;%& = 1 −%%

Equation 2 shows this relationship, where -(/!) is the 
amnesic function, and /! is the neuron’s age [1].

In summary, a punished event would weaken the pre-
action potential of the firing motor neurons, and the hidden 
neurons, with an increased learning rate, would more 
quickly memorize these decreased top-down motor weights. 
Likewise, with a rewarded event, the reverse would occur 
with the motor neurons, where the pre-action potentials 
would be increased, but these reinforced top-down motor 
weights would be more quickly learned by the hidden 
neurons because of the increased learning rate.

Practice Mode
Our proposed practice method allows to DN to run freely 

and update using its own actions. This allows the DN to 
essentially self-supervise, and if effective, could be a helpful 
tool, as a DN would be able to learn on its own with no 
human intervention at all [2].

(1)

(2)

Fig 1. 3DEye software used for collecting and labeling data

allowed us to supervise the DN on 3 motors: a singular 
stereo-disparity, based on the closest object in the frame, a 
heading direction motor (left, straight, right), indicating what 
direction the user should turn to stay on the center of the 
sidewalk, and a stop/go motor, which tells the user whether 
they are about to walk off the path on their current course or 
not. These three motors were recorded using the 3DEye 
software, as seen in Fig 1, were labeled in real-time using 
the same software, and were verified afterwards.

We first directly supervised on the even frames of Nav-1. 
Here, the growth rate was configured so that half of the 750 
neurons per column (750 × 9 = 6750 total hidden neurons) 
are activated in session 1, initialized sporadically throughout 
the first session. In session 3, all of the neurons are 
activated, and new neurons were initialized sporadically 
until all neurons were initialized by the end of the session. 
Our DN also had top-8 competition in each of the 3×3 = 9 
columns, and a global top-3 competition in the motor area.

After our supervision sessions, we let the DN freely 
practice with no reinforcement over 3 epochs on Nav-3. This 
was to see how allowing the DN to freely practice improved 
performance on the test sequences.

In a separate experiment, after the same supervision 
sessions, we reinforced the DN over 3 epochs on Nav-3. In 
our reinforcement sessions, we punished the disparity motor 
if the error was above 4 and rewarded it if the error was less 
than 2. We then decreased these thresholds by one for 
each of the following reinforcement session. For our other 
two motors, we punished if they were incorrect and 
rewarded if they were correct. These motors had a top-1 
competition in the motor area.

From our experimental data, we can see that a DN that 
underwent only practice sessions had slightly improved 
disparity errors after the practice sessions (see Table 2). 
This proves practice mode is effective and can be attributed 
to practice mode allowing neurons to update their weights to 
become more generalized, as seen in Fig 2.

Table 1. Average error through “lifetime” w/o reinforcement

Table 2. Average error through lifetime w/ reinforcement

From Table 2 we see that the reinforcement training on 
Nav-3-even improved the disjoint tests on Nav-3-odd. We 
also observe that such reinforcement training has negligible 
effects on the performance of other sequences (1 and 2), 
which means that their memory is not tangibly damaged. 
Ultimately, our multiple teaching modes is proven effective 
here, and the best performance was achieved with 
supervision and reinforcement, but practice mode also 
showed improvement.

Fig 3 shows a neuron that started as a noise neuron, 
representing a weak texture, and then re-learned a strong 
texture, representing a disparity of 4.

Fig 3. Noise neuron learning a concept over time

Fig 2. Updating weights over time in practice mode


