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Experiment 1

The incrementally computed average errors from time 
zero of all disjoint tests are shown in Fig 2. When the top-
down weight was 0.1, the average error was the smallest, 
reaching 1.0 pixels.

Table 1 shows the increased update rate achieved once 
the heavy computations of the DN were performed using the 
GPU and multiple CPU cores of the Android phone. The 
GPU version approaches the real-time speeds necessary 
for a real-world system.

Experiment 2

Autonomous robots rely on many sensors, such as lidar and 
cameras, to become spatially aware and navigate their environments. 
While Lidar has become a popular option, it is expensive, large, and 
lacks the rich information that is available to cameras. Stereo cameras 
could be low-cost, highly mobile, solutions if computer vision 
algorithms could adequately utilize the wealth of information provided 
by the cameras. Traditional stereo vision algorithms, however, are 
brittle, as they struggle to handle complex distortions provided by real-
world image pairs such as lighting differences between cameras, 
differences between viewing angles, and occlusion. Neural networks 
can address these problems by learning real-world representations 
and have found success in many visual tasks (including disparity 
detection). However, neural networks are used similarly to traditional 
stereo-disparity detection algorithms, where they generate a disparity 
value for each pixel and provide a depth map as input for another 
algorithm. Developmental Networks (DNs) are capable of attention, 
meaning they are not only able to predict disparity, but can also 
determine where to look. Furthermore, the DN can act as a full vision 
system by learning tasks that require both monocular and binocular 
visual information. This work provides a method for learning stereo-
disparity detection and for integrating binocular cues with monocular 
cues. We discuss the inner workings of the DN algorithm in terms of 
disparity detection and explore how the DN can learn to implicitly 
detect disparity through unsupervised updates.

INTRODUCTION

The main design considerations for stereo-disparity 
detection using the VCML-100 include the following 
mutually conflicting constraints: (1) real-time speed (2) cost, 
and (3) mobility. Accounting for the above constraints, we 
chose the following DN parameters. (1) The input is 
grabbed from a small, 135×135 pixel, mask on both the left 
and right images (red square in the figure below). (2) The 
hidden neurons are grouped into nine columns (inhibition 
zones), each column sharing the same initial receptive 
fields. (3) The input image is divided into 3×3 non-
overlapping subwindows, of size 45 × 45 pixels, where each 
subwindow is the receptive field for the neurons in its 
respective column. (4) The number of hidden neurons is 
limited. The figure below shows this DN architecture. 

Such a choice of parameters affects performance, but a 
practical system must be real-time with limited 
computational power (i.e., a smart phone). To help achieve 
real-time speeds, we designed a more optimal version using 
the GPU and multiple CPU cores of the Android phone. The 
improved rates of the more optimal version can be seen in 
table 1.

This work consists of two experiments. The first is meant 
to demonstrate how the DN can learn to detect the disparity 
of the nearest object through direct supervision. The second 
extends this idea by training on a larger amount of data and 
letting the DN learn disparity detection implicitly through 
passive updates (practice without supervision).

EXPERIMENTS

RESULTS

CONCLUSIONS

This work demonstrated the DNs capabilities to not only 
detect disparity, but also to integrate binocular and 
monocular patterns to accomplish a more complex task. We 
also demonstrated the benefits of implicit learning on 
feature generalization.

The DNs are potentially monumental tools for perception 
systems, as they can give autonomous robots a sense of 
spatial awareness. DNs are robust and general purpose, 
lending themselves to a wide variety of applications. Future 
work might expand on this work to include more modalities 
and more complex visual tasks.
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DNs are capable of attention and can incorporate both 
binocular and monocular information through their learning 
processes. Therefore, DNs lend themselves to be useful 
tools in autonomous navigation tasks. In this work, we 
explore the DNs ability to predict stereo-disparity and 
integrate binocular and monocular cues. Stereo-disparity is 
a shift between corresponding pixels in a Left and Right 
binocular image. Here, we do not require the DN to 
generate its own depth map, as that process would require 
too many computations to approach real-time performance. 
Instead, we propose a method where, through attention, the 
DN predicts a singular disparity value of the closest object in 
frame and can decide further navigation actions based on 
the monocular pattern of the image. Past work has 
demonstrated stereo-disparity detection via a DN on 
simulated image shifts [1].

Attention in the DN
The DN acts as a statical probability model that selects 

disparity using the generalized supervised weights (see Fig 
3) from the DN’s learning epochs [2]. We also propose two 
methods internal to the DN that help with the DNs statistical 
computations: volume dimension and subwindow voting [3]. 
Volume dimension adds a new dimension to each neurons 
input. This input is set to high when the other normalized 
inputs are low. This helps the DN attend to strong textures, 
reducing the attention given to weaker textures in 
computation. Subwindow voting leads to an output disparity 
that is weighted according to each subwindow’s analyzed 
certainty. This means that weak textures have less influence 
in “voting” for the correct disparity compared to stronger 
textures, hence, the DN “pays attention” to the stronger 
textured receptive fields. Attention is one of the major 
novelties of using a DN for stereo-disparity detection.

Integration of Monocular and Binocular Cues
Neuron's overtime become tuned to a specific binocular 

pattern, or specific shift in their two input images. This 
pattern can be used as neurons “vote” to produce a 
disparity. Concurrently, the monocular patterns can be used 
to inform other actions. Therefore, one neuron represents 
both binocular and monocular context, allowing the DN to 
seamlessly integrate information from both [4].
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Implicit Learning
Is the idea that the DN learns continuously (frame by 

frame), constantly updating its bottom-up weights, whether 
supervised or not. Therefore, an individual neuron within the 
DN will update on similar features so that its bottom-up 
weights become more generalized, and the neuron 
becomes tuned to a specific disparity and monocular 
pattern. Thus, the DN can continuously learn and generalize 
through passive updates (practice mode) [4].

Performance Equivalent DNs
Another important aspect of a DN is that each DN is 

performance equivalent. The amnesic learning nature of a 
DN means that on each neurons first firing, the learning rate 
is one and the retention rate is zero, hence, the randomly 
initialized weights are immediately forgotten. This avoids 
any need to select the best performing DN of many 
randomly initialized DNs [2].

For the first experiment, we used a sequence of 1400 
stereo images, recorded and labelled in real-time from the 
natural world. The DN was trained on frames from odd 
indices and tested on even frames. For this experiment, 
every DN had 100 neurons per column (900 total), top-8 
competition in each of the 3×3 = 9 columns, and a global 
top-3 competition in the motor area.

The data in the second experiment consisted of three 
stereo image sequences (Nav-1, Nav-2, Nav-3) collected in 
real-time from an outdoor walkway setting like the one in Fig 
1. Nav-1, Nav-2, and Nav-3 contained 6502, 6686 and 5508 
frames, respectively. We let the DN live through 14 
sessions, as shown in Table II. The DN has a growth rate 
with which half of the 750 neurons per column (750 × 9 = 
6750 total hidden neurons) are activated in session 1 and 
half session 3. 

In table 2, session is the epoch number, Nav is what 
sequence was used, Mode is the DN mode used (motor 
supervision, frozen, or practice), Disparity is the average 
disparity error over the whole session in pixels, heading is 
the classification error of what direction the user should 
head (left, straight, right), and stop/go is the classification 
error of whether to stop or continue (go).

Table 2 shows that the DN self-supervising in practice 
mode improved performance. This can be explained 
through practice mode allowing the weights of the DN to 
further update and generalize over epochs, allowing for a 
smoother transitions and an increased certainty in the 
statical computations of the DN.

The DN not only performed well on disparity, but also 
predicted the direction the user should be heading in and 
whether the user should stop/go with low error.

Fig 1. Visualization of our DN architecture.

Fig 2. Experiment 1 performance data

Table 1. Experiment 1 performance data

Table 2. Experiment 2 performance data

Fig 3. Weight visualization data from experiment 1
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