
Fast Developmental Stereo-Disparity Detectors
J. Arden Knoll∗†, Van-Nam Hoang¶, Jacob Honer∗‡, Samuel Church∗‡, Thanh-Hai Tran¶‖, Juyang Weng∗†§

∗GENISAMA LLC, Okemos, MI 48864 USA
†Department of Computer Science and Engineering, ‡Department of Electrical and Computer Engineering,

§Cognitive Science Program and Neuroscience Program, Michigan State University, East Lansing, MI, 48824 USA
¶MICA International Research Institute, ‖School of Electronics and Telecommunications,

Hanoi University of Science and Technology, Hanoi, Vietnam

Abstract—Traditional methods for stereo-disparity detection
use explicit search between the left and right images. Although
such methods are simple and intuitive for understanding, they
suffer from degeneracies when the search window contains weak
texture. Developmental Networks (DNs) are task-nonspecific and
modality-nonspecific learning engines. Because they are general-
purpose learners, they have a potential to deal with many types
of degeneracies in intelligent systems. This work presents two
novel mechanisms to deal with degeneracies: volume dimension
and subwindow voting. While developmental stereo-disparity
detection has been tested on simulated stereo images in our
prior publications, it has never been tested on the real world.
This paper reports our system, 3DEye, which is the first to
have filled this void. The algorithm, software, graphical user
interface, training, performance, and update rates on CPU and
GPU, respectively, on a Sony G8142 mobile phone are reported.
Many deep learning methods that use error back-propagation
suffer from the controversy of “post-selection” using the test set
[1], to select one from many networks to report. In contrast,
all randomly initialized DNs are performance-equivalent, no
“post-selection” using test set. Possible future improvements for
practical real-world and real-time applications are discussed.

I. INTRODUCTION

Artificial Intelligence (AI) has reflected two schools that
study natural intelligence of human minds — nativist and
connectionist. Closely related to the nativist school in natural
intelligence, we have seen the symbolic school in AI. The
connectionist schools in AI and natural intelligence have
shared the same term “connectionist”.

A. Symbolic school

Symbols are used in many AI methods (e.g., states in
HMMs, Graphical Models and SLAM), because they are
useful for computers and intuitive to programmers. However,
symbolic methods have limitations.

The symbolic school typically assumes a micro-world in 4D
space-time in which an object, apple-1, is unique in space-
time, represented by a series of symbols {symbol-1(t) | t0 ≤
t < t1}. The correspondences among all these symbols of the
same object across different times are known as “the frame
problem” [2] in AI. In computer vision, the symbolic school
assumes a single symbol “apple-1” for all its 3D x-positions
at time t in the 3D trajectory {x(t) | t0 ≤ t ≤ t1} and uses
techniques, such as feature tracking through video. Therefore,
the symbolic school is fact based, and, as the name “nativist”
implies, the facts are native and inborn.

Stereo-specific rules, such as left and right matching using
a sliding window, are typical in engineering versions of stereo
systems [3], [4].

For symbolic stereo-disparity detection, at each image po-
sition, the agent extracts a patch p on the left image at row-
column position (r, c) and searches along a horizontal line in
the right image for the best match p′ at (r, c′). The disparity
is defined by the difference of columns d = c′ − c.

Other motion-stereo methods explicitly compute dense dis-
parity vectors using an array of handcrafted features [5], [6].
However, such systems are not real-time as computations
along a dense pixel-grid take time when the number of grid
points is large.

For many symbolic stereo-disparity detection systems, the
match between left and right becomes degenerate when all
the pixels in the patch have the same, or nearly the same,
RGB values (i.e., weak texture). Therefore, multiple disparity
values may indicate a strong match. Because of this, symbolic
systems tend to have high brittleness and perform poorly in
natural settings.

B. Connectionist school

In contrast, the connectionist school is egocentric — mean-
ing that the agent must learn from its world without a hand-
crafted, world-centered object model. Although connectionist
methods often assume some task-specific symbols, e.g., a static
set of object labels, they typically do not assume a micro-world
model. Therefore, a connectionist model typically needs to
sense and learn using a network.

Networks, however, require a larger number of computa-
tions, typically higher than a corresponding symbolic system,
as static concepts in a symbolic system must be learned by
the network.

Genetic algorithms offer an approach to such learning.
These algorithms study changes in genomes across different
lives, but many genetic algorithms do not deal with lifetime
development [7]. We argue that handcrafting functions of a
genome for development seems to be a clean and tractable
problem which avoids the extremely high cost of evolution on
developmental algorithms.

Compared with methods of symbolic schools, a develop-
mental method must learn through a lifetime, starting with a
static genome called a developmental algorithm. Because a

Authorized licensed use limited to: Michigan State University. Downloaded on December 15,2021 at 01:47:37 UTC from IEEE Xplore. Restrictions apply.

developmental system does not assume a given-task, it tends
to have a relatively higher adaptability to natural settings than
methods of the symbolic school.

C. Developmental stereo-disparity detection
The neuroscience literature [8], [9], [10], [11], [12], has

reported that neurons in V1, V2, V5/MT and V4 are tuned
to different amounts of disparities. The shift of a pattern is
called “phase”. Our LCA (Lobe Component Analysis) theory
indicates that “phase” is a resulting phenomenon caused by
statistics-based competition in LCA. Such a “phase” phe-
nomenon has already been reported by our earlier work [13]
using a large number of locally shifted monocular natural
images as inputs to simulate stereo effects.

Here, the stereo-disparity detection is a system that is
trained from a general-purposed DN running on VCML-
100 hardware for real-time development. A DN is task-
nonspecific following the idea of AMD (Autonomous Mental
Development) [7], as its output can be trained to generate
actions other than disparity, such as navigation actions, naming
a recognized object, responding to a recognized sound, or
replying to sentences of natural languages [14].

For stereo-disparity detection, we consider output actions
as binocular disparities. However, actions from a DN can be
anything muscles can carry out, not only disparities.

Using horizontal shifts from monocular natural images to
simulate binocular images, Solgi & Weng 2009 [13] reached
a sub-pixel accuracy for developmental stereo-disparity de-
tection. The work here is the first for testing developmental
stereo-disparity detection for real-world images.

The major novelty of the work is to task-independently deal
with weak texture, mainly using two mechanisms:

The first new mechanism is called volume dimension. This
entails adding a new dimension to each neuron’s input that
is high when the other entries in the normalized input vector
are low. Volume dimension avoids degeneracies when a nearly
zero input vector (weak texture) of each neuron is normalized
to a unit vector — resulting in noise explosions.

The second new mechanism is subwindow voting. Within
a mask of 3 × 3 subwindows, each subwindow is analyzed
by a column of many hidden neurons. The output disparity is
the voting result from the 3 × 3 = 9 subwindows, weighted
according to each subwindow’s analyzed certainty.

The remainder of the paper is organized as follows. Sec. II
describes the system architecture and the selection of the major
parameters of the system for the stereo-disparity detector. The
DN algorithm is given in Sec. III, and Sec. IV discusses
how the system is trained and tested. Sec. V explains how
the system works for stereo-disparity detection when a DN is
accordingly trained. The experimental results are reported in
Sec. VI and Sec. VII provides concluding remarks.

II. SYSTEM ARCHITECTURE

This system utilizes the VCML-100 from GENISAMA,
which is equipped with a real-time stereo camera, a controller
for training or testing the learner, and binocular goggles for
viewing stereo videos or movies on a mobile phone screen.

... ...

...

Time t-1 Time t
0-1-2-3-4 1 2 3 4 *Motor

Z

Hidden

Y

Sensory

X

Top-1

competition

among neurons

in each of

9 columns

Top-1 competition within Z

A noise neuron voted for all

3x3=9

locations

3x3

receptive fields

Fig. 1. The architecture of the 3DEye network. The 3× 3 = 9 subwindows
(green) correspond to the mask (red) in which 3×3 columns will be computed
in the hidden area. The initial connections from the motor area at time t−1 to
hidden area are complete. The same is true from the hidden area to the motor
area at the current time t. The illustration only provides schematic connection
patterns, not all initial complete connections.

A. Design considerations

The main design considerations for stereo-disparity detec-
tion using the VCML-100 include the following mutually
conflicting constraints: (1) real-time speed (2) cost, and (3)
mobility.

Because the actions from the DN software must be in real
time (e.g., taking less than 30ms after a binocular image pair
is grabbed), we need to limit the number of computations for
each binocular image frame. This is especially important for a
mobile phone, such as the Sony G8142 that was used primarily
because of its high-resolution screen display suited for 3D
stereo-image views.

Taking into account the above constraints, we chose the
following DN parameters. (1) The input is grabbed from a
small, 135×135 pixel, mask on both the left and right images
(red square in Fig. 1). (2) The hidden neurons are grouped into
nine columns (inhibition zones), each column sharing the same
initial receptive fields. (3) The input image is divided into 3×3
non-overlapping subwindows (Fig. 2), of size 45× 45 pixels,
where each subwindow is the receptive field for the neurons
in its respective column. (4) The number of hidden neurons is
limited. Such a choice of DN architecture parameters affects
performance, but a practical system must be real-time with
limited computational power (i.e., a smart phone). To help
achieve real-time speeds, we designed a more optimal version
using the GPU and multiple CPU cores of the phone.

We would like to use more subwindows and columns. How-
ever, this would require more computations for each network
update, which would make real-time response unreachable.
The decision to limit the region for disparity detection to the
mask, defined by the 3 × 3 = 9 subwindows, was based on
human intuitive estimation and is not optimized.

Fig. 2 shows the graphical user interface (GUI) of the

Authorized licensed use limited to: Michigan State University. Downloaded on December 15,2021 at 01:47:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The graphical user interface of 3DEye in the stereo disparity mode,
displayed on the touch screen of a smart phone. Left RGB image: overlaid
luminance as green; right RGB image: overlaid luminance as purple. The
disparity value is heard through the earphone, and marked also visually by
the left vertical bar.

3DEye software. The left image (green) and the right image
(purple) overlap, allowing for intuitive labeling of disparity.

B. Binocular vergence

It is important that the absolute disparity value between the
left and right receptive fields accounts for a small proportion
of the subwindow size so that a given neuron’s input from the
left and right subwindows overlaps.

The two eyes of a human dynamically converge by a proper
amount to make the 3D fixation point to have a nearly zero
binocular disparity. This process is important to enable the
brain to use its limited neuronal resources effectively, because
dealing with very large binocular disparity will greatly divert
neuronal resources.

In contrast, the binocular cameras of 3DEye are fixed and
parallel. This means that all disparities are positive and only
infinity has a zero disparity.

As infinity is not a common fixation point, we select a 3D
fixation point that is near the center of the most likely fixation
region, called a calibrated 3D fixation point. We approximate
the effect of the converge motor using the following approx-
imation method. Globally shift both images horizontally so
that the calibrated 3D point has a zero disparity. The 3D points
should have smaller absolute values of disparities than without
such a global shift, because the disparities values now take
both negative and positive values.

III. DN ALGORITHM

The DN, detailed in [15], takes Z as the state/action and
X as input. It has a hidden area Y in which each hidden
neuron has different receptive fields in X and in Z. We should
consider Z as a state in a finite automaton (FA).

The receptive field from Z to each Y hidden neuron
(effective receptive field) is globally connected so that each
hidden neuron receives inputs from all Z neurons, as illustrated
in Fig. 1.

Each hidden neuron in Y takes x(t) = (xl(t),xr(t)) where
xl ∈ Xl and xr ∈ Xr denote the left image and right image,

respectively, and Xl and Xr are the space of left images and
the space of right images, respectively. Although not explicitly
stated, each hidden neuron only takes a small patch of x(t) =
(xl(t),xr(t)).

The DN algorithm is presented below:
Algorithm 1 (DN Algorithm): Areas: X: sensory; Y : hid-

den (internal); Z: motor
Input areas: X and Z.
Output area: Z.
The dimension and representation of the X and Z areas are
based on the sensors and effectors of the agent. Y is skull-
closed, meaning it is not directly accessible from the outside.

1) For the Y area, initialize the adaptive part Ny = (V,G)
and response vector y, where V is the synaptic weights
and G is the neuronal ages. All Y neurons have been
initialized with random weights and zero firing ages. The
Z area initializes its adaptive part Nz and the response
vector z in a similar way.

2) At time t = 0, supervise initial state z. Grab the first
sensory input x.

3) At time t = 1, 2, 3, ..., repeat the following steps forever
(executing steps 3a, 3b in parallel, before doing step 3c):

a) All Y neurons compute in parallel:

(y′, N ′
y) = fy(z,x, Ny) (1)

where fy is the Y area function to be explained
below, which computes the response vector y′ and
updates the adaptive part N ′

y of the Y area. The
area Y performs neuron splitting (mitosis) if the
best matched Y neurons do not match the input
vector y sufficiently well.

b) Components in z′ are supervised if they are never
fired. Otherwise, Z neurons use the following
expression to compute the Z area’s response vector
z′ and the adaptive part N ′

z in parallel:

(z′, N ′
z) = fz(y, Nz) (2)

where fz is the Z area function to be explained
below.

c) Then, replace for asynchronous update: y ← y′,
z← z′, Ny ← N ′

y and Nz ← N ′
z . Supervise input

x.
The DN is in asynchronous mode and must update at least

twice before the effects of each new input patterns in X and Z,
respectively, go through one update in Y and then one update
in Z to appear in X (if DN predicts also X) and Z.

A. Area function details of the DN algorithm

We use Lobe Component Analysis (LCA) [16] as the
neuron’s learning algorithm. The area function fy in Eq.(1)
and area function fz in Eq.(2) are computed by the follow-
ing procedures. These procedures have complex mechanisms
which contribute to computation of response vectors y′ and z′

and the maintenance of adaptive parts N ′
y and N ′

z for the Y
area and the Z area, respectively. The procedures of the area
function are described below.

Authorized licensed use limited to: Michigan State University. Downloaded on December 15,2021 at 01:47:37 UTC from IEEE Xplore. Restrictions apply.

1) Initialization: The random Grounded DN (GDN) initial-
ization method [17] is used for our implementation. Whenever
the network takes an input, add a volume dimension and
normalize per the specifications in [15] and compute the pre-
responses in Y . If the top-1 winner in Y has a pre-response
much lower than a perfect match, simulate a mitosis-equivalent
process by adding a new neuron to learn the new inputs from
X and Z. In this way, Y neurons fully store patterns from
beginning cases in training.

2) Pre-response computation: Each Y neuron i computes
its bottom-up pre-response and top-down pre-response, respec-
tively, by doing an inner product of normalized input and its
stored pattern. (We denote v̇ as the vector of v with a unit
Euclidean norm: v̇ = v/‖v‖.) The bottom-up pre-response
rb,i of each neuron i is calculated as follows:

rb,i = v̇b,i · ẋi (3)

where ẋi is the sensory input vector from X area and v̇b,i

is the bottom-up weight of that neuron. This computes the
similarity between each neuron’s stored weight pattern and
the input vector. The top-down response rt,i for each neuron
i is computed in the same way.

After each Y neuron i computes its bottom-up pre-response
and top-down pre-response, the neuron sets its pre-response
value to be the sum of the two values:

r′i = wbrb,i + wtrt,i (4)

where wb and wt are the weights for bottom-up and top-down,
respectively. We select wt, 0 ≤ wt ≤ 1, and then wb is
determined by wb = 1− wt.

The pre-response computation of Z neurons is similar, but
each Z neuron only has bottom-up input from Y . The Y area
always has 3× 3 = 9 winners as voters, one from each of the
3× 3 columns.

3) Top-k competition: The neurons within each of the 3×
3 columns compete to fire. We use top-k competition as a
simulation of dynamic inhibition among the neurons. The k
neurons with the highest pre-response value fire while other
neurons are suppressed. We adjust the pre-response value of
each winner neuron i based on their ranking, and obtain final
response value ri:

ri =

{
(r′i − r′k+1)/(r

′
1 − r′k+1) r′k+1 ≤ r′i ≤ r′1

0 otherwise
(5)

where r′1 is the highest response value; r′k+1 is the k + 1-th
high response value. The adjusted responses are used to update
corresponding firing neurons’ weights.

4) Hebbian learning: Hebbian learning is known to exist
in biological brains. Adaptations occur when a neuron fires.
The input that triggers firing in that neuron would be recorded
as an incremental average to the neuron’s weight vector.

The firing Y neuron i would update its bottom-up weight
and top-down weight respectively, using the Hebbian learning
rule. The update formula of Y neuron’s bottom-up weight is
as follows:

vb,i ← β1vb,i + β2riẋi (6)

where β1 is the retention rate and β2 is the learning rate of
the neuron i.

β1 =
mi − 1− µ(mi)

mi
, β2 =

1 + µ(mi)

mi
(7)

with β1 + β2 ≡ 1, where mi is the neuron’s firing age.
The Y neuron’s top-down weight is updated similarly. The

firing Z neurons also update their bottom-up weights in the
same way.

The amnesic parameter µ, modeling effects of genes, is a
monotonically increasing function of the neuron’s age (mi)
that prevents the learning rate β2 from being zero so that no
neuron stops learning (e.g., let t1 = 20, t2 = 200, c = 2,
τ = 2000):

µ(mi) =

0, if mi < t1

c(mi − t1)/(t2 − t1), if t1 ≤ mi ≤ t2
c+ (mi − t2)/τ, mi > t2.

(8)

IV. TRAINING AND TESTING

Although we were able to train and test a DN in real-
time using the 3DEye software, we elected to collect the data,
in real-time, to then train and test the DN in batch, varying
parameters to determine optimal performance.

A. Real-time data collection and labeling

The 3DEye software allows for continuous data collection
and labeling of the disparity of binocular images. For our
experiments, the 3D fixation point was calibrated at two
meters. The images and their corresponding disparity labels
were collected at 5Hz. Simultaneously, the trainer used the
VCML-100 controller to align the left and right images so that
the nearest point of the nearest object comes into focus within
one of the subwindows on the GUI. The amount the images
were shifted when an image was grabbed gave the disparity
label for those images. This is done with the application of
collision avoidance in mind.

Following data collection, we played back the images,
shifted with their labeled disparity, to validate the data and
make changes where required.

B. Training and testing in batch

The data collected as described above was split into two
groups. The odd frames were used for training while the even
frames where used for testing. Because it takes two frames for
the input x(t − 1) to reach z(t + 1), the training and testing
process must take into account this 2-frame delay. For testing,
this means the motor response at z(t) must be compared to the
label for x(t−2) to test the DN’s prediction accuracy. Training
and testing with batch data allowed us to test multiple DNs
with different parameters.

Note when any neuron happens to win for the first time
(age 1), the learning rate is 1 and retention rate is zero so
that its random weights will only affect which neuron wins
but not the resulting operational part of the DN — every DN
is equivalent. Because of this, we only ever have to test one
DN for each set of parameters.

Authorized licensed use limited to: Michigan State University. Downloaded on December 15,2021 at 01:47:37 UTC from IEEE Xplore. Restrictions apply.

V. THEORETICAL ANALYSIS

A. Hidden area of the DN

Suppose there are 100 hidden neurons for each of the 3×3 =
9 initial receptive fields. Because Hebbian learning will make
some weights become zero or nearly zero, each neuron will
change the location and shape of its receptive field. There are
a total of 3 × 3 × 100 receptive fields in each image, each
corresponding to their respective 3× 3 = 9 subwindows. The
network computes the top-1 winner neuron among the 100
neurons in each column. This results in nine winners whose
input is used for the Z area competition.

Suppose neuron nij is dedicated to a subwindow si, i =
1, 2, ..., 9, j = 1, 2, ..., 100. Let the bottom-up weight vector
of neuron nij be denoted by wij . Then, wij is an LCA
vector [16] learned from all binocular sample sub-images sik,
k = 1, 2, ...n when the neuron fires, where n � 100 is
a large but finite number indicating the number of lifetime
training images. In other words, from n image pairs, the DN
incrementally developed 3 × 3 × 100 feature vectors, wij ,
i = 1, 2, ..., 9, and j = 1, 2, ..., 100.

If k = 1 for top-k competition within each neuronal column,
the LCA vectors are not necessarily well distributed in the
sample space, especially if the same images arrive in a biased
way, e.g., early images do not show in later ages. After all,
an early experience that is not reviewed later in life tends to
be forgotten. It is desirable for k > 1 for each sub-image
si, i = 1, 2, ..., 9, however, review of early experiences is still
important if early experiences need to be recalled in later ages.

B. Explanation of DN weights

We divide this material into three subsections, bottom-up
weights of hidden neurons, bottom-up weights for motor neu-
rons, and top-down weights for hidden neurons, all illustrated
in Fig. 1.

1) Bottom-up weights for hidden neurons: As discussed
above, the bottom-up weight for a neuron nij is an LCA
feature from subwindow si that neuron nij happens to learn
through competition. If the bottom-up receptive field of neuron
nij has a large overlap between the left subwindow and right
subwindow, the Hebbian learning expression in (6) is able to
trim the left and right receptive fields so that the resulting
binocular weight vector (wl,wr) corresponds to a pattern
in which rl is similar to rr except that their locations are
different. Let us see an example: wl = (∗, 1.01, 2.02, ∗, ∗) and
wr = (∗, ∗, 1.02, 2.01, ∗), where ∗ denotes values that do not
match. This location difference between wl and wr is called
binocular disparity tuned by this neuron. The similar patterns
(1.01, 2.02) in wl and (1.02, 2.01) in wr are called binocular
patterns tuned by this neuron. Therefore, the binocular weight
vector (wl,wr) contains both disparity information and pat-
tern information.

Thus, with [17] we have proven the following theorem:
Theorem 1 (“Glass box” disparity): The disparity of a

binocular pattern in each hidden neuron is not independent of
the binocular pattern, but rather is embedded inside it. If all

the hidden neurons link to the motor using Hebbian learning,
the motor reports disparities if it is supervised so.

Hebbian learning automatically decides the scope and scale
of the pair of binocular receptive fields based on the presence
of such wide variety of differences. No stereo-specific rules
are necessary in this biologically inspired DN.

2) Bottom-up weights for motor neurons: According to
the DN theorem [17], each weight of a motor neuron is the
probability that the connected hidden neuron fired, given the
motor neuron fired. This result is for a single hidden area
where only one neuron fires at each time. Here, we have
3 × 3 = 9 neuronal columns, each of which has one best-
matched neuron firing.

Among these 3×3 = 9 columns, some columns are looking
at weak texture and others are not, but the network does not
know which are and which are not. This is a typical puzzle
for us to solve in order to understand the emergent behavior
of the DN.

Under each image input, consider two columns: A column
that has a weak-textured input, e.g. a uniform gray area, which
we call a noise column, and another column that has a strong-
textured input, which we call a reliable column.

The noise column has a winner neuron whose weights
happened to match the uniform gray area best. Whenever this
“noise” neuron fires, the firing motor neuron is independent of
this “noise” neuron. In other words, this “noise” neuron links
to many motor neurons. Because the neurons in the motor area
(Z) compete to win according to their pre-action potential,
summed from the 3 × 3 = 9 columns, the “noise” Y neuron
does not contribute selectively to the competition in Z.

Contrarily, a “reliable” neuron is very different from a
“noise” neuron. Because its input texture is strong, whenever
it fires, it contributes reliably only to the single neuron in the
motor area that is supervised to fire.

In summary, a “reliable” neuron contributes to only a few
specific motor neurons but a “noise” neuron widely contributes
to many motor neurons. Because motor neurons compete to
win, a “reliable” neuron plays a greater role in deciding motor
outputs than a “noise” neuron.

3) Top-down weights for hidden neurons: In Section V-B1,
we discussed only the bottom-up weights for hidden neurons.
In fact, each hidden neuron has two parts of input, bottom-
up and top-down. As proven in [17], the top-down part
corresponds to the state match in a finite automaton (FA), and
the bottom-up part corresponds to the input match in the FA.
In order for each hidden neuron to successfully compete, it
must match well for both parts, as a transition in an FA must
match both the state and input in the FA transition table.

In a DN, the state context is the last motor pattern at the
previous time. In other words, the DN is a spatiotemporal
learning machine. It considers the context of all past history
condensed into the disparity value in the motor area.

VI. EXPERIMENTS AND RESULTS

We used a sequence of 1400 stereo images, recorded in real-
time from the natural world, mostly outdoor like the one in

Authorized licensed use limited to: Michigan State University. Downloaded on December 15,2021 at 01:47:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Visualization of some examples: Left: Input images; Center: bottom-
up and top-down (TD) weights of hidden neurons; Right: Weights updated
through time t of a single neuron. Hidden neurons are indexed by i.

Fig. 4. Average disparity error over every testing time t from t = 0 by
a DN that has learned 700 stereo frames. TopDown: (i.e., wt in Eq. (4))
the weight of top-down match contributed to the pre-action potential of each
hidden neuron. The total number of hidden neurons: 900, 100 per column.

Fig. 1. Fig. 3 gives the visualization. The DN was trained on
frames from odd indices and tested on even frames.

The incrementally computed average errors from time zero
of all disjoint tests are shown in Fig. 4 with the even indices
renumbered as 0, 1, 2 ... for convenience.

When the top-down weight was 0.1, the average error was
the smallest, reaching 1.0 pixels after 700 frames had been
learned. For this experiment, every DN had 100 neurons per
column (900 total), top-8 competition in each of the 3×3 = 9
columns, and a global top-3 competition in the motor area.

This table reports the average speed data, in network update
rates, while the same DN ran on a Sony G8142 mobile phone.

Version Training rate Frozen-testing rate
CPU 0.96 Hz 1.00 Hz
GPU 7.16 Hz 10.47 Hz

In real-world stereo situations, a pair of the matching left

and right image patches exhibits more complex distortions
beyond a simple shift. Future versions of the 3DEye will
use more neurons, optimized subwindow dimensions to more
finely learn such differences.

VII. CONCLUSIONS

This paper presented the first developmental stereo-disparity
detection system for the real world (implemented through
3DEye). The average error in detected disparities reached
around 1.0 pixel in our experiments. In general, the more
hidden neurons the DN has, the less the average error, since
DNs do not have the problem of post-selection [1] mentioned
in the abstract. We will study larger memories in the future.

The DN, as “glass box”, seems to be suited for integrating
the rich information redundancy available in color stereo
images. Compared with traditional window-search methods in
disparity detection, the developmental systems here for real-
world and real-time stereo-disparity detection seem to present
a superior robustness for driverless cars and blind visual aids,
competing with laser scanners in robustness and cost.

REFERENCES

[1] J. Weng. Life is science (36): Did Turing Awards go to fraud?
Facebook blog, March 8 2020. www.facebook.com/juyang.weng/posts/
10158319020739783.

[2] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Upper Saddle River, New Jersey, 3rd edition, 2010.

[3] W. E. L. Grimson and D. Marr. A computer implementation of a theory
of human stereo vision. In L. S. Baumann, editor, Proc. ARPA Image
Understanding Workshop, pages 41–45, 1979.

[4] U. R. Dhond and J. K. Aggarwal. Structure from stereo: A review.
IEEE Trans. Systems, Man and Cybernetics, 19(6):1489–1510, Nov. -
Dec. 1989.

[5] D. J. Fleet, A. D. Jepson, and M. R. M. Jenkin. Phase-based disparity
measurement. CVGIP: Image Understanding, 53(2):198–210, 1991.

[6] J. Weng. Image matching using the windowed Fourier phase. Interna-
tional Journal of Computer Vision, 11(3):211–236, 1993.

[7] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,
and E. Thelen. Autonomous mental development by robots and animals.
Science, 291(5504):599–600, 2001.

[8] A. Anzai, I. Ohzawa, and R. D. Freeman. Neural mechanisms underlying
binocular fusion and stereopsis: position vs. phase. Journal of Cognitive
Neuroscience, 94:5438–5443, 1997.

[9] F. Gonzalez and R. Perez. Neural mechanisms underlying stereoscopic
vision. Progress in Neurobiology, 55(3):191–224, 1998.

[10] I. Ohzawa, G. C. DeAngelis, and R. D. Freeman. Stereoscopic depth
discrimination in the visual cortex: Neurons ideally suited as disparity
detectors. Science, 249:1037–1041, 1990.

[11] C. W. Tyler. Representation of stereoscopic structure in human and
monkey cortex. Trends in Neurosciences, 27(3):116–118, 2004.

[12] A. J. Parker. Binocular depth perception and the cerebral cortex. Nature
Reviews Neuroscience, pages 379–391, 2007.

[13] M. Solgi and J. Weng. Developmental stereo: Emergence of disparity
preference in models of visual cortex. IEEE Trans. Autonomous Mental
Development, 1(4):238–252, 2009.

[14] J. Weng, Zejia Zheng, Xiang Wu, and Juan Castro-Garcia. Auto-
programming for general purposes: Theory and experiments. In Proc.
International Joint Conference on Neural Networks, pages 1–8, Glasgow,
UK, July 19-24 2020.

[15] J. Weng, Z. Zheng, and X. Wu. Developmental network two, its
optimality, and emergent turing machines. U.S. Provisional Patent
Application Serial Number: 62/624,898, Feb. 1 2018. Published.

[16] J. Weng and M. Luciw. Dually optimal neuronal layers: Lobe component
analysis. IEEE Trans. Autonomous Mental Development, 1(1):68–85,
2009.

[17] J. Weng. Brain as an emergent finite automaton: A theory and three
theorems. International Journal of Intelligent Science, 5(2):112–131,
2015.

Authorized licensed use limited to: Michigan State University. Downloaded on December 15,2021 at 01:47:37 UTC from IEEE Xplore. Restrictions apply.

