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Abstract—Most intelligent systems require the use of multiple
sensors and motors, but training these systems becomes costly
as the number and complexity of sensors and motors increase.
Reinforcement learning promises to make the training process
easier on human trainers but can take significantly more time.
While many learning systems are either directly supervised
or supervised through reinforcement, few can learn through
multiple teaching modalities. Furthermore, many neural network
systems do not allow for frame-incremental learning. This work
introduces a real-time, frame-incremental framework that uses
multiple sensors and multiple teaching modes (motor-supervision,
reinforcement, or self-practice). The Developmental Network
(DN) used in this work is optimal in the sense of maximum
likelihood throughout a “lifetime”, under three conditions: (1) an
incremental learning framework, (2) a training experience and
(3) a limited amount of computational resources. Because the DN
is free from the local minima problem, all DNs are performance-
equivalent and we record “lifetime” errors of a single trained
network, removing a need for post-selection—post-selecting the
luckiest network from many randomly initialized and trained
neural networks according to their performances on test sets.

I. INTRODUCTION

The two major novelties of this work involve the multisen-
sory and multi-teaching capabilities of our system. Our system
is able to integrate information from multiple sensors (two
cameras) by learning from multiple teaching modes (motor-
supervision, reinforcement, and practice).

A. Multisensory Systems

The general consensus in biology is that coarse multisensory
circuits are available early in life and are refined later on [1].
In other words, both single-modality and multi-modality skills
are present early in life.

Consistent with the biological data, our model does not
assume that single modalities are developed first and integrated
later in life to give rise to multisensory skills. Instead, our
model provides coarse connections to multi-modal areas early
in life, which are then refined concurrently over time through
neuronal competitions. Monocular neurons eventually result
from the refinement of coarse binocular neurons in early life,
similar to what was reported in [2] for unilateral-eye-closure
kittens. In the case of two cameras, motor neurons that require
monocular (single sensor) information learn to interpret the
same neuronal input pattern differently from those motor
neurons that require binocular (multiple sensors) information.

The early integration of multisensory information is not only
biologically inspired, but seems to be consistent with maximal
likelihood optimality, where the system must minimize the
average error over its “lifetime”. The first novelty of this
work in multisensory learning is the theory and method for
integrating monocular information with binocular information.
However, the learning process is tedious and takes large
amounts of data. Thus, we developed a system that can also
learn from multiple teaching modalities.

B. Multi-teaching Systems: Eight Types

Traditionally, the frameworks for supervised learning and
reinforcement learning were treated as different systems.
Biologically, however, these two learning types should be
considered two special cases of a multi-teaching system.

Weng 2012 [3] proposed a biologically inspired framework
which unifies supervised learning, reinforcement learning, and
a new kind of learning called communicative learning. This
general framework considers three attributes: representation
type (symbolic or emergent), effectors (teacher imposed or
learner self-generated), and biased sensors (reinforcement or
no reinforcement). These three attributes are combined to give
rise to a total of eight learning types.

A 3-tuple (s, e, b) is used to classify training types. For
example, s = 1 means symbolic internal representation, e = 1
means effector-imposed, and b = 1 means biased sensors (pain
and sweet) are activated. Therefore, the binary code seb =
000, 001, ..., 111 results in eight types of teaching. A system
is not fixed in supervised learning or reinforcement learning,
but can conduct any type of learning at any time.

Many methods in traditional AI, fussy systems, evolutional
computation, and neural networks (e.g., Neocognitron [4],
HMAX [5], and LSTM [6]) use an open-skull approach where
a human programmer selects features or controls the hidden
connections. Thus, traditional supervised learning corresponds
to type seb = 110. However, supervised learning using a
skull-closed DN, used in an earlier version of our system
(3Deye) [7], corresponds to type seb = 010. Our motor-
supervised learning, seb = 010, is different from traditional
motor-supervised learning, seb = 110, because we require
everything inside the skull to be off-limit to human access
and unsupervised. Motor signals cannot directly dictate any
hidden neuron, only indirectly affect it.
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In this second version of 3Deye [7], we investigate types
seb = 010, seb = 001, and seb = 000.

Real-time and interactive teaching of type seb = 010 is
challenging because it requires the teacher to continuously
provide the motor actions (e.g., stereo disparity, where, what,
and navigation actions) on time. Providing reinforcement
signals (i.e., bad or good) for the desired motor actions is
easier than providing actual values.

In past work, our DN was able to integrate motor-supervised
learning seb = 010 and reinforcement learning seb = 001 [8],
[9] by allowing the environment to conduct motor-supervision
and reinforcement.

DNs avoid using any symbolic model or time-discount
model that causes a greedy behavior without a long-term value
system. Instead of a value r in Q-learning [10], punishments
and rewards are modeled by biologically inspired biased
sensors. Pain sensors cause a release of “serotonin” and sweet
sensors cause a release of “dopamine”. The biased neural
modulators are diffusely transmitted to the entire brain [11].

In this work, we also conduct seb = 000 type learning,
called communicative learning, during which the system gen-
erates its own actions and observes the effects without direct
motor or reinforcement supervision from the human trainer. If
there are any interactions from the teacher, the interactions
are from “unbiased sensors” such as video cameras and
microphones.

We believe that the future of machine learning is in type
seb = 000, which is likely the most powerful since this mode
seems to occur most commonly in human learning. However,
we do not expect great performance improvements for this first
attempt at communicative learning, other than creating more
smooth clusters in hidden neurons which tend to improve the
feature detection and attention.

The novelties of the multi-teaching aspects of this work are
the seb = 000 communicative learning, and the integration of
the three types of learning: motor supervised, reinforcement,
and communicative.

II. SYSTEM ARCHITECTURE

We ran 3DEye on a Sony G8142 mobile phone attached to
a GENISAMA VCML-100 to satisfy the following mutually
conflicting constraints: (1) real-time speed, (2) low cost, and
(3) high mobility. See [7] for details of design considerations,
DN architecture, and the graphical user interface.

A. DN Algorithm

The DN, detailed in [12], takes Z as the state/action and
X as input. It has a hidden area Y in which each hidden
neuron has different receptive fields in X and in Z. We should
consider Z as a state in a finite automaton (FA).

The receptive field from Z to each Y neuron (effective
receptive field) is globally connected so that each hidden
neuron receives inputs from all Z neurons, as shown in Fig. 1.

Each hidden neuron in Y takes x(t) = (xl(t),xr(t)) where
xl ∈ Xl and xr ∈ Xr denote the left image and right image,
respectively, and Xl and Xr are the space of left images and

...

...
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Fig. 1. The architecture of the 3DEye network as DN-1 with motor neurons
needing monocular and binocular cues. All hidden Y neurons emerge ML-
optimally.

the space of right images, respectively. Although not explicitly
stated, each hidden neuron only takes a small patch of x(t) =
(xl(t),xr(t)).

The DN algorithm is presented below:
Algorithm 1 (DN Algorithm): Areas: X: sensory; Y : hid-

den (internal); Z: motor
Input areas: X and Z.
Output area: Z.
The dimension and representation of the X and Z areas are
based on the sensors and effectors of the agent.

1) At time t = 0, supervise initial state z0. Grab the
first sensory input x0, all the weights are random with
neuronal ages being zero. y0 being a zero vector.

2) At time t = 1, 2, 3, ..., grab xt. Each neuron in Y and Z
areas update in parallel using dually optimal LCA [13].

B. DN Reinforcement Learning

The effects of serotonin and dopamine on motor neurons
and hidden neurons are different.

For motor neurons, the effects are to weaken or strengthen
the pre-action potential of the target motor neurons, which
determines their likelihood to fire. Computationally, each
motor neuron has a learned serotonin weight wp and a learned
dopamine weight ws, that are the age-dependent amnesic
averages of past serotonin and dopamine quantities. The firing
neuron i, in motor zone j, learns its pain and sweet weights
(wip and wis) from its serotonin rjp and dopamine rjs:

wip ← w1wip + w2rjp

wis ← w1wis + w2rjs

where w1 and w2 are the age-dependent amnesic retention rate
and learning rate, respectively in Eq. (1) [13].

The “unbiased” pre-action potential riu of a firing neuron
i is relatively weakened by serotonin 0 ≤ wip ≤ 1 and is
relatively strengthened by dopamine 0 ≤ wis ≤ 1 to become
the biased pre-action potential (zi) that participates in the top-
k competition for motor-neuron firing in the future:

zi = riuγ(1− αwip + βwis)
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(e.g., α = 0.9, β = 0.3 and γ = 1) [8].
For hidden neurons, the effects are to increase the learning

rate of the target neurons so that they can better memorize
such important events—punishments and rewards [9] relative
to mundane unbiased events. Computationally, the learning
rate w2 and retention rate w1 of the firing hidden neuron are
modified by wis + wip in the following way:

w2 = min

{
(1 + wis + wip)

1 + µ(ai)

ai
, 1

}
;w1 = 1− w2.

(1)
where µ(ai) is the amnesic function [13] depending on the
firing age of neuron i.

III. THEORY

The lack of autonomous development in most learning
systems has lead to multiple problems in standard AI research.
By autonomous development, we mean that the brain inside
the skull is inaccessible to human teachers.

A. PSUTS

Post Selection Using Test Sets (PSUTS) is the experimental
practice of using test sets in post selection of systems and is
one problem propagated by the lack of autonomous develop-
ment in intelligent systems.

Suppose all data is denoted as set D. It is divided into three
disjoint sets, training set T , validation set V , and test set T ′,
D = T ∪ V ∪ T ′. The training set is used to train a network,
the validation set is the exam used for validating whether the
trained network does well, and the test set is the real exam. The
test set T ′ should not be available to the system developers.

If the system developers want to reduce the bias in dividing
between T and V , they may use a validation method, such
as cross-validation, where they divide all the data in T and
V into f folds and do f experiments. In the i-th experiment,
i = 1, 2, ..., f , they use the i-th fold as the validation set V
and the remaining data as the training set T , reporting the
average error of these f networks as the validation error.

However, the developers must choose one of their networks
with only the validation error, and without its performance on
the test set T ′ because T ′ is secret.

If some competition organizers made the test set available to
all competitors, allowing competitors to see test set errors, then
competitors could use those results to find the network with
the smallest error among their large group of networks. This
would mean the competition has fake performance because the
method for determining the performance is improper.

In a typical neural network publication, the test set T ′ is
self-collected or downloaded from a public site. This, unfor-
tunately, causes the improper research practice of PSUTS.

All traditional neural networks, trained through gradient-
based methods such as error back-propagation, suffer from the
local minima problem. The DN, however, is unique in that it
does not suffer from this problem and is ML-optimal.

B. Developmental errors
A traditional network is a classifier that approximates a

static mapping from a domain X of vectors to a set S of
symbols, where each symbol corresponds to a class. The DN,
on the other hand, considers two entities concurrently, all
the sensors form the sensory space X and all the effectors
for the motor space Z. The hidden area Y , which emerges
automatically from X and Z, is considered a part of the
temporal context, defined by

ct , (xt,yt, zt)), t = 0, 1, 2, ... (2)

where x ∈ X , y ∈ Y and z ∈ Z, indexed by discrete time t.
Since the resulting network is extremely recurrent, we must

unfold time t for the network as the following Table shows:

TABLE I
UNFOLDING TIME IN THE DEVELOPMENT OF DN

Time sample index 0 1 2 ...
Actable world Wz Wz(0) Wz(1) Wz(2) ...

Motor Z Z(0) Z(1) Z(2) ...
Skull-closed brain Y Y (0) Y (1) Y (2) ...

Sensor X X(0) X(1) X(2) ...
Sensible world Wx Wx(0) Wx(1) Wx(2) ...

Unlike many neural networks that suffer from the so-called
wait-for-convergence problems, each column in the table can
use only the information in the immediately left column so
the network responds in real time.

We treat X and Z in Table I as external because they can
be “supervised” by the world as well as “self-supervised” by
the network itself. We require the area Y to be internal and
hidden from external teachers.

Since Weng 2015 [14], we require a DN to be ML-optimal
under three conditions: (1) the system restrictions (i.e, the
body’s sensors and effectors); (2) the teaching experience; (3)
the computational resources including the number of hidden
neurons. For performance evaluation, we record all the errors
that take place throughout the lifetime:

Definition 1 (Developmental error): The developmental er-
rors of a developmental network N = (X,Y, Z,M) with
sensory area X , hidden area Y , motor area Z, and memory
M , run through lifetime by sampling at discrete time indices
t = 0, 1, 2, ... as N(t) = (X(t), Y (t), Z(t),M(t)). Starting
at t = 0 with supervised sensory input x0 ∈ X(0), initial
state z0 ∈ Z(0), random weight vector y0 ∈ Y (0), and
initial memory m0 ∈ M(0), the network N recursively and
incrementally updates at each time t = 1, 2, ...:

(xt,yt, zt,mt) = f(xt−1,yt−1, zt−1,mt−1) (3)

where f is the Developmental Program (DP) of N . If zt ∈
Z(t) is supervised by the teacher, the network complies and
the error et = 0 is recorded. Otherwise, N generates a motor
vector zt and its deviation from the desired z∗t is recorded as
error et. The lifetime average error from time 0 to time t is

ē(t) ,
1

t

t∑
i=0

ei =
t− 1

t
ē(t− 1) +

1

t
et (4)
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where the second equation gives an incremental way to com-
pute the average.

Under the above Three Conditions, DN-1 in [14] and DN-2
in [12] were proven to be optimal in the sense of maximum
likelihood. This is independent of the initial weights because a
different set of weights may affect which neurons fire first but
the resulting network is performance equivalent to all other
DNs given the same data. Thus, there is no need for PSUTS.

C. Motor Neurons that Need Binocular Cues

There are two types of motor neuron: those that need
binocular cues and those that need monocular cues.

Binocular cues are useful for near-range depth perception
[15]. The farther an object is from the viewer, the less the
binocular disparity is observable.

Our LCA (Lobe Component Analysis) theory indicates that
“phase” is a resulting phenomenon caused by statistics-based
competition. Such a “phase” phenomenon has already been
reported by our earlier work [16] using a large number of
locally shifted monocular natural images as inputs to simulate
stereo effects. This earlier work reached a sub-pixel accuracy
for developmental stereo-disparity detection and was the first
to use this biologically inspired approach.

For stereo-disparity detection, the output actions are binoc-
ular disparities. However, because the DN is task-nonspecific,
following the idea of AMD (Autonomous Mental Develop-
ment) [17], its output can be trained to generate actions other
than disparity (navigation, object/sound recognition, etc) [18].

An important mechanism for dealing with weak-texture is
subwindow voting. Within a mask of 3× 3 subwindows, each
subwindow is analyzed by a column of many hidden neurons.
The output disparity is the voting result from the subwindows,
weighted according to each subwindow’s analyzed certainty.

It is also important that the absolute disparity value between
the left and right receptive fields accounts for a small propor-
tion of the subwindow size so that a given neuron’s input from
the left and right subwindows overlaps. In contrast to human
eyes, the binocular cameras of 3DEye are fixed and parallel.
This means that infinity has a zero disparity.

As infinity is not a common fixation point, we select a 3D
fixation point that is near the center of the most likely fixation
region. We simulate the effect of the human convergence
motor by globally shifting both images horizontally so that the
calibrated 3D point has a zero disparity. The 3D points should
then have smaller absolute values of disparities because the
disparities values now take both negative and positive values.

D. Motor Neurons that Need Monocular Cues

Unlike laser scanners, information from a single video cam-
era is rich. The cues that human monocular vision [19] utilizes
to perceive depths include accommodation, linear perspective,
interposition, shading and lighting, texture gradient, relative
size, aerial perspective and motion parallax [15].

Consider that we teach 3DEye to navigate a walkway
bounded by lawns and bushes with possible obstacles such
as pedestrians. Although disparity information is useful for

detecting obstacles, disparities do not provide information
about the walkway. Monocular information is vital in this
situation and in similar applications like autonomous driving.

The general-purpose nature of a DN does not require a user
to handpick features inside the skull. All he needs to do is
to link the motor to the real navigation effectors, such as the
steering wheel, the gas pedal, and the brake.

E. Multisensory Integration

We have the following theorem.
Theorem 1 (Multisensory abstraction): Suppose that a DN

has two types of motor neurons, disparities and heading direc-
tion. Then, the disparity motor neurons automatically establish
connections from those hidden neurons that are tuned to the
specific disparity values regardless (invariant to) monocular
cues. Similarly, the heading-direction motor neurons automat-
ically establish connections from those hidden neurons that
are tuned to the specific monocular cues regardless (invariant
to) disparity values.

Proof: Without loss of generality we assume k = 1
in top-k competition within each column. According to the
proof in [14], each of the 9 columns has 1 neuron firing that
corresponds to the best match between the LCA weight vector
and the binocular image patch at the corresponding receptive
field. Let us consider two cases, (a) disparity neuron and (b)
heading neuron. (a) When a disparity neuron fires, 9 hidden
neurons fire but the supervised motor neuron corresponds
to the nearest receptive field per learning rule to detect the
nearest object. Thus, the hidden neurons corresponding to the
smallest disparity (nearest) are linked with the motor neuron
per Hebb’s rule. The value of the connection corresponds to the
probability for the hidden neurons to fire, conditioned on the
motor neuron is firing. The firing neurons in the hidden areas
also establish their connections with the firing motor neurons,
to update the conditional probability per [14]. Because a
disparity motor neuron is supervised to fire only when the
disparity value is observed, the motor neuron pulls all such
hidden neurons tuned to this disparity regardless of monocular
cues. The proof for (b) is similar and therefore is omitted.

IV. EXPERIMENTAL RESULTS

The purpose of the following experiments was to illustrate
how the DN integrates monocular and binocular cues to
perform a difficult task and test the effects of the seb = 010,
seb = 001, and seb = 000 teaching modes.

The data consisted of three stereo image sequences (Nav-1,
Nav-2, Nav-3) collected in real-time from an outdoor walkway
setting like the one in Fig. 1. Nav-1, Nav-2, and Nav-3
contained 6502, 6686 and 5508 frames, respectively.

We let the DN live through 14 sessions, as shown in Table II.
The DN has a growth rate with which about half of the 900
neurons per column (750 × 9 = 6750 total hidden neurons)
are activated in session 1 and half session 3. The hidden area
used k = 8 for top-k in each of the 9 columns, the disparity
motor area used k = 3 (k = 1 for heading and stop/go), and
the top down weight was set to 0.1 like that in [7].
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TABLE II
AVERAGE ERRORS THROUGH “LIFETIME” SESSIONS WITHOUT

REINFORCEMENT

Session Nav Mode Disparity Heading Stop/Go
1 1-even Motor-S 0.00 px 0% 0%
2 1-odd Frozen 1.27 px 10% 2%
3 2-even Motor-S 0.00 px 0% 0%
4 2-odd Frozen 1.43 px 15% 3%
5 1-odd Frozen 2.19 px 17% 2%
6 3-odd Frozen 2.74 px 20% 3%
7 3-even Practice 2.71 px 21% 3%
8 3-odd Frozen 2.70 px 23% 4%
9 3-even Practice 2.67 px 24% 3%
10 3-odd Frozen 2.70 px 23% 4%
11 3-even Practice 2.68 px 26% 3%
12 2-odd Frozen 1.65 px 15% 2%
13 1-odd Frozen 2.31 px 21% 3%
14 3-odd Frozen 2.67 px 26% 3%

TABLE III
AVERAGE ERRORS THROUGH “LIFETIME” SESSIONS WITH

REINFORCEMENT

Session Nav Mode Disparity Heading Stop/Go
7 3-even Reinforce 2.79 px 49% 39%
8 3-odd Frozen 3.06 px 14% 4%
9 3-even Reinforce 2.73 px 65% 53%

10 3-odd Frozen 2.60 px 15% 4%
11 3-even Reinforce 2.43 px 15% 3%
12 2-odd Frozen 2.74 px 20% 3%
13 1-odd Frozen 2.26 px 13% 4%
14 3-odd Frozen 1.27 px 10% 2%

We defined three motor concepts for our DN to learn and
labeled each frame of the image sequences for each motor.
The disparity is the same as defined in [7] with a range of
-5 to 9. The heading is the direction in which the navigation
system should move: left, straight, or right. The stop/go motor
concept contains two neurons: stop and go.

While all three navigation sequences contained a range of
disparity values between -4 and 5, Nav-1 exclusively contained
the value of -5 disparity and Nav-2 exclusively contained
the range 5 to 9. Since all motor neurons must be linked
before reinforcement learning to have a nonzero chance of
firing, we split each navigation sequence into odd frames and
even frames to create six total sequences. Combining both
Nav-1-odd with Nav-2-odd and Nav-1-even with Nav-2-even
gave the full range of disparity values, and we used the two
combinations as disjoint sets.

To begin our experiments we first trained with motor-
supervision (seb=010) on Nav-1-even (session 1), tested on
Nav-1-odd (session 2), and then trained on Nav-2-even (ses-
sion 3). After session 3 we tested the DN in frozen mode on
Nav-2-odd and Nav-1-odd again (sessions 4 and 5). To get the
DN’s performance on an unseen sequence, we ran the frozen
DN on Nav-3-odd (session 6).

Since DNs are performance-equivalent, we took the DN that
ran on sessions 1-6 and created two identical copies to be
trained differently from that point forward. This is why the
errors for sessions 1-6 are only reported once in Table II and
not in Table III and why there is a horizontal line separating
sessions 1-6 in Table II from the rest of the sessions.

We let one DN learn on Nav-3-even with reinforcement
(seb=001), and then tested its performance on Nav-3-odd in
frozen mode (sessions 7-8 in Table III). Since reinforcement
may need to take multiple epochs, we repeated sessions 7-8
two more times (sessions 9-14). In session 7, we punished the
disparity motor if the error was above 4 and rewarded it if
the error was less than 2. We then decreased these thresholds
by one for each following reinforcement session. The heading
and stop/go motors, on the other hand, were always punished
if their prediction was incorrect and rewarded if it was correct.
We set α = 0.9, β = 0.3, and γ = 1 so that reinforcement
quickly changes the DN’s behavior.

To compare the effects of reinforcement against self-practice
(seb=000), sessions 7-14 in Table II ran without reinforcement.
The hidden neurons were updated with LCA and all other mo-
tor neurons were left to update freely without reinforcement.

For both DNs, we repeated test sessions 4-6 to see if the
DN forgot its earlier experience. In both Tables, “Motor-S”
means “motor-supervision”, “Frozen” means the DN does not
learn. “Practice” means the DN is running freely and updating
using its own actions, and “Reinforce” means the DN motors
are being reinforced. The session-wise average disparity error
is shown under the Disparity column and the classification
error (percent of incorrect classifications) for the heading and
stop/go motors is shown under those respective columns.

A. Performance

In Table II, the DN that underwent only practice ses-
sions had slightly improved disparity errors after the practice
sessions. This improvement showed that practice mode is
effective; the neurons were able to update their weights to
become more generalized as seen in Fig. 3.

There are three important conclusions from Table III: (1)
The motor-supervised training (seb=010) is effective in disjoint
tests. (2) The reinforcement training (seb=001) on Nav-3-even
improved disjoint tests on Nav-3-odd. (3) Such reinforcement
training has negligable effects on the performance of other
sequences (1 and 2) meaning their memory is not tangibly
damaged. Overall, the multisensory and multi-teaching scheme
is experimentally confirmed.

B. Visualization

We would like to provide a visualization for the features the
DN has automatically developed. For visualization purposes,
k = 1 for top-k competition in the Y and Z areas. Nav-1 was
used for training and then Nav-2 was used for practice.

Fig. 2 shows how some stereo road images participated in
the updates of a bottom-up feature, which is averaged with
more sensory inputs from age 1, to 101. This specific neuron
fired once while training and then about 100 times while in
the practice mode. This shows that the neuron was able to
teach itself through passive updates. The disparity values of
the Z neurons that are linked to this hidden neuron show that
it trained on values that were either correct or nearly correct.

Fig. 3 shows a neuron that was relatively noisy (concrete
surface) until after age 60. Then, the neuron matched a few
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Fig. 2. Some road features developed.

Fig. 3. Some more general features developed.

images with a larger disparity well enough that it learned those
weights and became tuned to that new disparity value.

Fig. 4 shows the bottom up weights of the motor neuron
that corresponds to disparity -4 (center subwindow).

V. CONCLUSIONS

As far as we are aware, this paper presented the first multi-
sensory learning system that uses multiple teaching modalities.
This work represents a major step towards enabling systems
to not only be motor-supervised, but also to be self-taught
through real-time practice, with or without reinforcers.

Our results also showed that the DN is able to take ad-
vantage of the rich data that cameras provide by seamlessly
integrating monocular and binocular visual information. Thus,
the DN could be a robust and inexpensive perception system,
making it competitive against laser-based systems.

Future work will involve fully autonomous learning
(seb=000 mode) where motor-supervision is self-generated.

REFERENCES

[1] D. J. Lewkowicz and A. A. Ghazanfar. The emergence of multisensory
systems through perceptual narrowing. Trends in Cognitive Sciences,
13(11):470–478, 2009.

[2] D. H. Hubel and T. N. Wiesel. The period of susceptibility to the
physiological effects of unilateral eye closure in kittens. Journal of
Physiology, 206(2):419–436, 1970.

Fig. 4. Visualization of the bottom up weights of the motor neuron for
disparity -4. A darker intensity means a larger value.

[3] J. Weng. Natural and Artificial Intelligence: Introduction to Computa-
tional Brain-Mind. BMI Press, Okemos, Michigan, 2012.

[4] K. Fukushima, S. Miyake, and T. Ito. Neocognitron: A neural network
model for a mechanism of visual pattern recognition. IEEE Trans.
Systems, Man and Cybernetics, 13(5):826–834, 1983.

[5] T. Serre, T. Poggio, M. Riesenhuber, L. Wolf, and S. Bileschi. High-
performance vision system exploiting key features of visual cortex. US
Patent, US7606777B2, Sept. 1 2006.

[6] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[7] J. A. Knoll, V. N. Hoang, J. Honer, S. Church, T. H. Tran, and
J. Weng. Fast developmental stereo-disparity detectors. In Proc. IEEE
International Conference on Development and Learning and Epigenetic
Robotics, pages 1–6, Valparaiso, Chile, Oct. 26-27, 2020.

[8] Z. Zheng, K. Qian, J. Weng, and Z. Zhang. WWN: Integration with
coarse-to-fine, supervised and reinforcement learning. In Proc. Inter-
national Joint Conference on Neural Networks, pages +1–8, Beijing,
China, July 7-13 2014.

[9] Z. Zheng, K. Qian, J. Weng, and Z. Zhang. Modeling the effects of
neuromodulation on internal brain areas: Serotonin and dopamine. In
Proc. International Joint Conference on Neural Networks, pages +1–8,
Dallas, TX, 2013.

[10] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292,
1992.

[11] J. Weng. Natural and Artificial Intelligence: Introduction to Compu-
tational Brain-Mind. BMI Press, Okemos, Michigan, second edition,
2019.

[12] J. Weng, Z. Zheng, and X. Wu. Developmental Network Two, its
optimality, and emergent Turing machines. U.S. Provisional Patent
Application Serial Number: 62/624,898, Feb. 1 2018. Published.

[13] J. Weng and M. Luciw. Dually optimal neuronal layers: Lobe component
analysis. IEEE Trans. Autonomous Mental Development, 1(1):68–85,
2009.

[14] J. Weng. Brain as an emergent finite automaton: A theory and three
theorems. International Journal of Intelligent Science, 5(2):112–131,
2015.

[15] M. Kalloniatis and C. Luu. The perception of depth. In H. Kolb,
E. Fernandez, and R. Nelson, editors, Webvision: The Organization of
the Retina and Visual System, pages 1139–1148. University of Utah
Health Sciences Center, Salt Lake City, UT, 2007.

[16] M. Solgi and J. Weng. Developmental stereo: Emergence of disparity
preference in models of visual cortex. IEEE Trans. Autonomous Mental
Development, 1(4):238–252, 2009.

[17] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,
and E. Thelen. Autonomous mental development by robots and animals.
Science, 291(5504):599–600, 2001.

[18] J. Weng, Zejia Zheng, Xiang Wu, and Juan Castro-Garcia. Auto-
programming for general purposes: Theory and experiments. In Proc.
International Joint Conference on Neural Networks, pages 1–8, Glasgow,
UK, July 19-24 2020.

[19] M. Dattilo, V. Biousse, B.B. Bruce, and N.J. Newman. Functional and
simulated visual loss. In M. Hallett, J. Stone, and A. Carson, editors,
Handbook of Clinical Neurology, volume 139, pages 229–341. Elsevier,
Amsterdam, Netherlands, 2016.

Authorized licensed use limited to: Michigan State University. Downloaded on December 15,2021 at 01:49:12 UTC from IEEE Xplore.  Restrictions apply. 


